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SECTION THREE: Vaccines in development and new vaccine strategies

     Alternative vaccine delivery methods 
   Bruce G.   Weniger   
  Mark J.   Papania    

  The earliest known route of vaccination was respiratory, by 
intranasal insufflation of powdered scab material containing 
variola virus from smallpox patients, reportedly practiced in 
China as early as the 10th century  AD  (see  Chapters 1  and  32 ).  1   
The cutaneous route for such variolation involved breaking the 
skin with a sharp instrument, and it was used in India perhaps 
as early as in China, but it was not documented until the 16th 
century.  2   Variolation was supplanted by safer cutaneous applica-
tion of material from cowpox lesions, the method of “vaccina-
tion” known in the 18th century and first published by Edward 
Jenner. 

 After 15th-century experiments with hypodermic injection,  3   
the introduction of the needle and syringe (N-S) in the mid-
19th century by Pravaz,  4   ,   5   Rynd,  6   and Wood  7   began a new era in 
medicine. Pasteur used a Pravaz syringe to inoculate sheep in 
the famed controlled challenge experiment demonstrating pro-
tection against anthrax, after which he honored Dr. Jenner by 
broadening his predecessor's term—vaccination—to mean the 
administration of immunizing agents for various diseases, not 
just smallpox.  8   

 With acceptance of the germ theory and resulting steriliza-
tion of medical equipment by the early 20th century,  9   and with 
mass production of needles and glass (later plastic) syringes by 
mid century, hypodermic injection became the norm for conve-
nient, accurate, and certain administration of most vaccines and 
many drugs. Regrettably, aseptic practice was ignored in many 
developing countries,  10   ,   11   and by nonmedical- intravenous-drug 
users everywhere,  12   leading to widespread iatrogenic and self-
inflicted disease transmission during that era once decried as 
the Injection Century.  13   

 Other drawbacks of N-S include needlestick injuries to health 
care workers,  14   ,   15   needle-phobia and discomfort for patients fac-
ing increasingly crowded immunization schedules,  16   ,   17   and the 
costs and complexity of safe disposal of sharps in the medical 
waste stream.  18   In the early 21st century, new targets for disease 
control and eradication, the expansion of philanthropic efforts to 
make expensive new vaccines affordable for the world's children, 
and promising results for novel techniques have stimulated 
research on vaccine delivery that avoids N-S and may be dosage 
sparing. Preparedness efforts for threatened pandemics and bio-
terrorism have also rekindled  19   ,   20   past interest  21   in novel needle-
free methods for mass vaccination campaigns. 

 Existing and potential alternatives to conventional intramus-
cular (IM) and subcutaneous (SC) vaccination by N-S, as well as 
by oral ingestion, are classified here into three major categories: 
 cutaneous vaccination, jet injection,  and  respiratory vaccination .  22   
The cutaneous route may be subdivided into  classical intradermal  
(ID) via conventional needle, passive diffusion with or without 
 chemical enhancers or adjuvants, and disruption or  penetration 

of the  stratum corneum by mechanical contact, heat, electricity, 
or light. Jet injection involves pressurizing liquid into high-veloc-
ity streams to reach targeted IM, SC, or ID tissues. Respiratory 
vaccination delivers airborne particles via the nose or mouth for 
 deposition onto the mucosal surfaces of the upper or lower airways. 

  Cutaneous vaccination 

 As mentioned, the skin was one of the first tissues into which 
variola (smallpox) virus and, later, cross-protecting cowpox virus 
were introduced to prevent smallpox. This route remains the 
standard for smallpox vaccine (now containing vaccinia virus) 
(see     Chapter 32 ), as well as for administering bacille Calmette-
Guérin (BCG) to prevent tuberculosis (see     Chapter 35 ). 

 The cutaneous route has both demonstrated and hypotheti-
cal advantages over other delivery methods, as described here 
and as reviewed by others.  23–44   Reduced dosages of various vac-
cines into the skin, compared with full dosages into muscle or 
fat, have shown this tissue's dosage-sparing ability, which is 
useful when vaccines are scarce, or unaffordable in full dosages. 
The skin is also the least invasive route, and thus, in theory, 
cutaneous delivery of new antigens is less likely to result in 
unanticipated serious adverse reactions—for example, intussus-
ception after the first American oral rotavirus vaccine,  45   Bell's 
paralysis of the seventh cranial nerve after the first European 
intranasal influenza vaccine,  46   ,   47   and the occasional abscesses 
and nerve injury from needle injections into muscle and fat. 

 Of course, BCG and smallpox vaccines delivered into 
the skin are not always benign, and rarely they may result in 
uncontrolled replication and spread of the live antigen, caus-
ing serious complications, particularly in immunocompromised 
patients.  48–50   Nevertheless, skin reactions in general are easier to 
detect early and access with palliatives or active therapeutic or 
anti-inflammatory agents than are reactions in deeper tissues. 

 Finally, successful delivery of antigen by cutaneous vacci-
nation is relatively sure, although not as certain as the “gold 
standard” of needle injection. And, as with needles, lack of 
cooperation by some infants and children can be overcome with 
firm restraint. In contrast, oral doses can be spit out or vom-
ited, and intranasal doses sneezed out or blocked by mucoid 
or purulent rhinitis. Some pulmonary delivery methods require 
patient-initiated inhalation ( see  Figure 61-8E   ), or they may 
take from 30 seconds to over 2 minutes to administer by mask 
or prong (see  Figure 61-7A,B,E,F   ). Such drawbacks may raise 
doubts about successful delivery of the antigen. 

 An unstandardized and inconsistent nomenclature to des-
cribe vaccination targeting the skin is found in the  literature 
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(eg,   cutaneous, dermal, epicutaneous, epidermal, intracutane-
ous, intradermal, intraepidermal, intraepithelial, patch, per-
cutaneous, skin, topical, transcutaneous,  and  transdermal ). 
Often, prefixes of Latin  (intra, per, trans)  or Greek  (epi)   origin 
are paired hetero-lingually with root terms for skin of the 
other etymology,  derma  (G.) and  cutis  (L.). Some recent coin-
age results from commercial intent to claim trade names from 
among this synonymy. In this chapter,  cutaneous vaccination  
is the preferred term to encompass all methods for delivery 
of antigen anywhere into or onto the skin.  Classical intrader-
mal  injection, or just  intradermal  (ID), is generally reserved for 
a type of cutaneous vaccination in which a bolus of liquid is 
deposited into the dermis to raise a visible bleb, as in the tradi-
tional Mantoux injection (discussed below). 

  Anatomy and immunology of the skin 

 The outermost section of the skin is the epidermis, a stratified 
squamous epithelium that is usually about 0.1 mm thick but can 
be from 0.8 to 1.4 mm on the palms and soles ( Figure 61-1A   ). 
The  stratum malpighii  layer comprises the primary component 
of the epidermis, and its dividing and growing keratinocytes 
serve both a structural function— limiting the passage of water 

and other molecules—and an immunologic role. Keratinocytes 
 germinate just above the basement membrane, which demar-
cates the boundary between epidermis and deeper dermis. These 
cells then grow, flatten, mature, and senesce in increasingly 
superficial strata until they reach the surface and are sloughed. 
The main product of this cell is keratinohyalin, a dense lipid that 
helps form a waterproof barrier. The lateral edges of adjacent 
keratinocytes are tightly linked by desmosomes, which maintain 
the strength of the epidermis and also contribute to its resistance 
to the passage of foreign matter or molecules.  51   ,   52   

 The topmost horny layer of the epidermis is the  stratum cor-
neum , comprised of staggered courses of dead keratinocytes—
also known as corneocytes—in a lipid bilayer matrix. This stack 
of 10 to 20 cells, 10 to 20  μ m thick, is the principal obstacle to 
the introduction of vaccine antigen for cutaneous vaccination. 

 Below the epidermis and basement membrane lies the der-
mis, about 1.5 to 3 mm thick, in which fibroblasts, fine col-
lagen, elastic fibers, and most skin organelles, including small 
blood vessels, lymphatic vessels, nerves, hair follicles, and 
sweat and sebaceous glands, are found. The subcutaneous tis-
sue below the skin, sometimes referred to as the hypodermis, 
consists primarily of fat; it varies widely in thickness between 
different body surfaces and, of course, individuals. 
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 Figure 61-1    Key Antigen-presenting Cells of the Immune System for Cutaneous and Respiratory Vaccination.    (A)  Activated Langerhans 
cells (dark stain) in the epidermal Malpighian layer 48 hours after immunization by application of cutaneous patch containing heat-labile enterotoxin 
(LT) of  E. coli . Full depth of dermis not shown. (From Glenn GM, Taylor DN, Li X, et al. Transcutaneous immunization: a human vaccine delivery 
strategy using a patch. Nat Med 6:1403-1406, 2000 [Fig. 3b, p. 1405]; from Glenn GM, Kenney RT, Hammond SA, et al. Transcutaneous 
immunization and immunostimulant strategies. Immunol Allergy Clin North Am 23:787-813, 2003 [Fig. 1, p. 788]; and from Glenn G, Kenney R. 
Mass vaccination: solutions in the skin. Curr Top Microbiol Immunol 304:247-268, 2006 [Fig. 1, p. 249].)    (B)  Transmission electron micrograph of 
nasal-associated lymphoid tissue (NALT) from excised human adenoids, showing lack of apical cilia at the endothelial lumen (top) of an M cell 
(M), the M cell nucleus (MN), and the lymphocytes (L) enfolded in the cell's invaginated pocket, which remains contiguous with the extracellular 
space. M cells sample particulates from the lumen, presenting them to lymphocytes, macrophages, and dendritic cells, which congregate in the 
pockets. (From Fujimura Y. Evidence of M cells as portals of entry for antigens in the nasopharyngeal lymphoid tissue of humans. Virchows Arch 
436:560-566, 2000 [Fig. 3, p. 563]; and from Kraal G. Nasal associated lymphoid tissue. In: Mestecky J, Lamm ME, Strober W, et al, eds. Mucosal 
Immunology. 3rd ed. Amsterdam: Elsevier, 415-434, 2005 [Fig. 23.3, p. 417].)     
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 Skin thicknesses have been mapped in children to identify 
the histologic suitability of sites for cutaneous vaccination.  53   
Equally important is selecting skin sites that are easily accessed 
so as to minimize disrobing and loss of privacy. In smallpox 
eradication, the volar surface of the forearm was commonly 
used because it was quickly accessible, the vaccinator could hold 
the vaccinee's wrist for stabilization (and to prevent escape), and 
the scar was easily visible to verify prior vaccination.  1   

 The speed of diffusion of therapeutic substances transcel-
lularly through the dead and living keratinocytes, and via the 
intercellular channels between them, correlates with smaller 
molecules ( <  500 Da), lower melting points, increased lipophi-
licity (and correspondingly lower water solubility), higher (satu-
rated) concentrations, and a relative lack of pendant groups that 
form hydrogen bonds that slow diffusion.  31   ,   54   

 The specific mechanisms that produce the resulting immune 
response when vaccine antigen is introduced into the skin are not 
entirely clear. With stimulation, keratinocytes can produce pro-
inflammatory cytokines (eg, interleukin 1 [IL-1]) and can them-
selves function as antigen-presenting cells by displaying major 
histocompatibility complex (MHC) class II antigens (human leu-
kocyte antigen [HLA]-DR), as well as intercellular adhesion mole-
cules (ICAM-1).  55   Epidermal Langerhans cells are believed to play 
a key role in cutaneous immunization, although dermal dendritic 
cells and other well-known immune system players, such as 
CD8 +  and CD4 +  T lymphocytes, mast cells, and macrophages, 
also circulate or reside in the epidermis or dermis.  36   ,   37   ,   39   ,   56–60   

 The immature Langerhans cells reside like sentinels among 
the keratinocytes in the epidermis, comprising about a quarter 
of the skin surface area,  61   where they efficiently capture foreign 
antigens by phagocytosis or endocytosis. Like dendritic cells in 
other tissues (see     Chapter 5 ), on activation (see  Figure 61-1A ) 
these professional antigen-presenting cells (APC) process the 
antigen as they migrate to draining lymph nodes. There, now 
mature, they express high levels of class II MHC molecules, and 
present the antigen brought from the skin to T-helper (Th) lym-
phocytes, a critical step for the subsequent immune responses 
orchestrated by the latter cells.  

  Delivery by sharp instruments or needles 

  Traditional vaccination for smallpox 
 During the more than 200 years of cutaneous vaccination 
against smallpox (see     Chapter 32 ), a variety of sharp instru-
ments have been used to cut, scratch, poke, and other-
wise penetrate into the epidermis (and unnecessarily deeper 
into the dermis), for inoculation of cowpox or vaccinia virus 
( Figure 61-2A,B,C,D   ).  1   In the 18th and 19th centuries, the scar-
ification method involved scratching one or more lines into the 
skin with a needle, scalpel (lancet), or knife and rubbing vac-
cine into the resulting lesion. A rotary lancet first described in 
the 1870s consisted of a shaft attached to the center of a small 
disk, the opposite (patient's side) of which contained a central 
tine surrounded by smaller satellite tines. The twirling of the 
disk in a drop of vaccine on the skin produced much abrasion of 
the skin and often severe reactions from both  vaccine and com-
mon bacterial contaminants. In the less traumatic multiple-
pressure method introduced in the early 1900s, liquid 
vaccine was placed onto the skin and a straight surgical needle, 
held tangentially to the skin with its tip in the drop, was repeat-
edly and firmly pressed sideways into the limb 10 times for 
 primary vaccination, and 30 times for revaccination.  62   Multi-
tine devices have also been used.  63   ,   64   

  Bifurcated needle 
 In the 1960s, Benjamin Rubin invented the bifurcated needle 
(see  Figure 61-2D ),  65   for which Wyeth waived the royalties so 
that the World Health Organization (WHO) could produce it 
for smallpox eradication.  1   ,   66   The device holds approximately 

2.5  μ L by  capillary action between its tines, which is applied 
perpendicularly into the skin. This uses one fifth of the typical 
dose volume needed by earlier multiple-pressure methods, but 
it requires a higher virus concentration. Its simplicity, portabil-
ity, and economy greatly facilitated the latter half of smallpox 
eradication, particularly in Asia and East Africa.   

  Tuberculosis vaccination 
 The bacille Calmette-Guérin vaccine for the prevention of dis-
ease from  Mycobacterium tuberculosis  was originally admin-
istered orally in the 1920s (see     Chapter 35 ). Safety concerns 
prompted a shift to cutaneous administration by ID needle 
injection (1927),  67   and later multiple puncture (1939),  68–71   scar-
ification (1947), and multi-tine devices ( Figure 61-2, images A, 
C, G, F ),  64   ,   72   ,   73   as described earlier for smallpox vaccine. BCG 
has also been delivered cutaneously by jet injectors  74   and bifur-
cated needles.  75   

  Mantoux method 
 The needle technique for  classical intradermal  injection, as 
used for BCG, was developed in the early 20th century by Felix 
Mendel  76   and separately by Charles Mantoux  77   for the adminis-
tration of tuberculin (now replaced by purified protein derivative) 
used for diagnosis of tuberculosis infection. Now referred to as 
the  Mantoux  method, this procedure has become the common 
route for ID injection of various antigens (see  Figure 61-2G ). 
A short-bevel, fine-gauge needle, usually 27 gauge (0.016 inch, 
0.4060 mm diameter), is inserted, bevel up, at a 5 to 15-degree 
angle into slightly stretched skin, often the volar surface of the 
forearm.  78   The tip is advanced about 3 mm until the entire bevel 
is covered. Upon injection of fluid, proper location of the bevel 
in the dermis creates a bleb, or a wheal, as the basement mem-
brane and epidermis above are stretched by the fluid. Leakage 
onto the skin indicates insufficient penetration to cover the 
bevel. Failure to produce a bleb indicates an improperly deep 
location of the fluid in the subcutaneous tissue. Drawbacks to 
the Mantoux method for mass vaccination campaigns are the 
training, skill, and extra time needed to accomplish it correctly. 

    Reinventing the wheal 
 The potential dosage-sparing effect of ID vaccination, reduc-
ing the amount of antigen needed by up to 80% (by reducing 
the volume from 0.5 to 0.1 mL), has prompted renewed atten-
tion to this route because of concerns about emerging threats 
such as pandemic influenza, severe acute respiratory syndrome 
(SARS), and bioterrorism, which may leave populations vul-
nerable because of insufficient vaccine supply.  23   ,   24   Both old and 
new techniques can more easily achieve the  classical intrader-
mal  injection of the Mantoux method, depositing the injectate 
into the skin to produce a raised bleb or wheal of temporary 
induration. Since the 1960s, multiuse-nozzle jet injectors 
(see “Jet injection”, later) have allowed ID delivery of small-
pox, BCG, and other vaccines by using these specialized nozzles 
(see  Figure 61-2E ).  66   ,   79–81   Some adaptations of modern disposable-
syringe jet injector technology also achieve  classical intrader-
mal  injection, namely the Tropis  82   and the Bioject ID-Pen  83   (see 
 Figure 61-2J,K , and   Table 61-1   ). 

  Mini-needle 
 To circumvent the amount of skill and time needed for success-
ful Mantoux injection, Becton, Dickinson (BD)  84   developed a 
prefilled glass syringe with a staked, 30-gauge (outer diameter 
[OD], ~ 0.305 mm) mini-needle, which projects only 1.5 mm 
beyond its depth-limiting hub for intuitive perpendicular inser-
tion into the skin (see  Figure 61-2H ).  85   ,   86   Termed the Soluvia 
Micro-Delivery System, it was licensed exclusively by Sanofi 
Pasteur  87   for certain vaccine applications. 
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 The Soluvia's first major clinical trial (although unidentified 
in the publication) was for the ID trial arm using an investiga-
tional GlaxoSmithKline (GSK) influenza vaccine.  88   Later, Sanofi 
Pasteur undertook a series of clinical trials with its own triva-
lent, inactivated influenza vaccine,  89–93   which led to marketing 
approval in Europe in 2009  94   for ID delivery of its Intanza and 
IDFlu products.  95   These contained either 9  μ g of viral hemag-
glutinin per strain per 0.1 mL for adults through age 59,  92   ,   93   ,   96   
or a full (non–dosage sparing) 15  μ g for those 60 and older.  89–91   

 In the US trials cited in the product insert,  97   Sanofi Pasteur's 
US-made Fluzone Intradermal product, containing 9  μ g per 
strain, was found to induce geometric mean titers (GMTs) of 
hemagglutination-inhibiting antibody that were non-inferior to 
those of control patients receiving conventional Fluzone by the 
IM route with 15  μ g per strain. In 2011, the US Food and Drug 
Administration (FDA) licensed the vaccine and its unique pre-
filled delivery system, with an indication that it be used only 
for patients 18 to 64 years of age. Several other countries (eg, 
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 Figure 61-2    Devices for Smallpox Delivery and Classical Intradermal Vaccination.    (A)  Vaccinostyle (no longer used for smallpox vaccine), 
which scratches the skin before or after applying liquid vaccine.    (B)  Rotary lancet (no longer used for smallpox vaccine), twirled between thumb and 
fingers to abrade skin.    (C)  Surgical needle (no longer used for smallpox vaccine), pressed parallel to skin in multiple-pressure method.    (D)  Pronged 
end of bifurcated needle (full length, 5 to 7 cm), the current preferred device for smallpox vaccination, holds between its tines approximately 2.5  μ L 
fluid by capillary action.    (E)  Intradermal nozzle of Ped-O-Jet  607   multiuse-nozzle jet injector (no longer used, see Figure 61-5C) (Keystone Industries), 
showing 0.127-mm-diameter orifice bored into inset sapphire. Recessed cone in the nozzle directs jet stream across a short air gap at ~45-degree 
angle into skin.    (F)  “Kuchiki needle” multi-tined applicator for administration of Japanese BCG vaccine by a method termed  percutaneous  
delivery.  72      (G)  Traditional Mantoux method for creating intradermal wheal using 26-gauge hypodermic needle and conventional 1-mL syringe.    (H)  
Prefilled version of Soluvia mini-needle intradermal syringe (BD Micro-Delivery System; Becton, Dickinson and Co.  84  ) used for intradermal delivery 
of Sanofi Pasteur  87   brands of inactivated influenza vaccine (Intanza, IDflu,  94   Fluzone Intradermal  97  ). (From Kis EE, Winter G, Myschik J. Devices for 
intradermal vaccination. Vaccine 30:523-538, 2012 [Fig. 3, p. 526].)  (H inset)  The 30-gauge staked mini-needle projects 1.5 mm beyond its hub 
to limit the depth of injection upon perpendicular insertion into the skin. Marketing of vaccine-device combination product approved in European 
Union in 2009 and in United States in 2011.    (I)  Investigational adaptor for conventional tuberculin syringe-needle for quick and consistent Mantoux 
intradermal injection (SID Technologies,  107   West,  111   PATH  106  ), to be used for rabies vaccination in the developing world,  108   among other indications.  112   
The fixed gap of  <  1.0 mm underneath the “Ski-tip” guide manipulates the skin to optimize needle placement regardless of bevel orientation.    (J)  
Investigational new version of Tropis needle-free intradermal jet injector (PharmaJet  82  ).  (J inset)  Unfolded cocking “wings” are used to compress 
its metal spring between injections. Original model cleared by FDA for US marketing in 2011.    (K)  Investigational Bioject ID Pen needle-free jet 
injector for intradermal delivery of 0.1 mL (0.05-mL-dose model not shown) (Bioject Medical Technologies  83  ). Powered by metal spring cocked with 
built-in lever. Disposable polypropylene spacer on disposable syringe creates the desired air gap to weaken the jet stream for intradermal delivery.   
 (Figure 61-2A, B, C, E, G, courtesy of James Gathany, Greg Knobloch [CDC Photographic Services]; 61-2D, I, courtesy of Bruce G. Weniger; 61-2F, courtesy of Japan 
BCG Laboratory;  73   61-2H, courtesy of Sanofi Pasteur;  27   ,   87   61-2J, courtesy of PharmaJet;  82   61-2K, courtesy of Bioject Medical Technologies.  83  )   
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Canada, Australia, New Zealand) have also licensed a Sanofi 
influenza vaccine in the Soluvia mini-needle delivery system. 

 A plastic, non-prefilled, empty, sterile version of the Soluvia 
mini-needle syringe is potentially available to others for end-
user filling.  98   Detaching its hub exposes the full needle length to 
access conventional vials. Potential applications include post-
exposure rabies prophylaxis in the developing world, for which 
a clinical trial demonstrated protective seroconversion compa-
rable to a full dosage by the IM route  99   (see “Other conventional 
vaccines”, later), as well as delivery of protein-based therapeu-
tics,  100   among others.  40   

 A 34-gauge (OD, ~ 0.178 mm) version of the Soluvia, with-
out the bulky plastic emballage required to shield the needle for 
health workers, is sized for preclinical animal experiments. These 
produced good immune responses to anthrax recombinant protec-
tive antigen (rPA),  101–103   conventional hemagglutinin and plasmid 
DNA antigens for influenza,  104   and live recombinant yellow fever 
vector for Japanese encephalitis vaccines.  105   Rabbits immunized 
intradermally and challenged with about 100 LD 50  of  Bacillus 
anthracis  spores had survival rates (no adjuvant, 100%; alumi-
num salt adjuvant [alum], 100%; CpG, 83%) that were identi-
cal to those of IM-immunized controls.  101   Rhesus macaques were 
protected from aerosol challenge with lethal dosages of anthrax, 
botulism, plague, and staphylococcal pathogens or toxins.  103    

  Adapter for Mantoux injection 
 A novel syringe adapter (see  Figure 61-2I ), designed for quicker 
insertion and improved consistency over the traditional Mantoux 
technique (see  Figure 61-2G ), guides the needle to its appropri-
ate position in the skin to produce the desired bleb. In human 
trials conducted by PATH (once known as the Program for 
Appropriate Technology in Health),  106   the adapter's Luer inter-
face was fitted to conventional 1.0-mL syringe, and injections 
of 0.1 mL produced desired blebs in 100% of 20 bevel-up and 
20 bevel-down injections, yielding mean diameters of 9.3 mm, 
 ±  0.9 mm SD (range, 7 to 12 mm), with ID deposition confirmed 
by ultrasound in all patients.  107–109   The device was developed by 
SID Technologies,  110   with financial and technical support from 
the Centers for Disease Control and Prevention (CDC), West 
Pharmaceutical Services,  111   and PATH,  106   ,   112   which has rights 
in the developing world for rabies vaccination and other appli-
cations. At licensure, West will manufacture and market the 
adapter in the United States and other developed countries.   

  Other intradermal vaccines 
 In addition to smallpox and BCG, and a combined BCG-and-
smallpox vaccine,  113   ,   114   over a dozen other vaccine types have 
been administered intradermally. 

  Influenza 
 A substantial literature documents equivalent immunogenicity, 
occasional superiority, and, less commonly, lower responses to 
influenza vaccination by the ID route using needle-syringe com-
pared with larger dosages by the SC and IM routes.  174   Studies 
took place in two eras. The first started in 1937 with a report by 
Thomas Francis (of Salk polio vaccine trial fame)  115   and extended 
until 1979, when the last two of the 1976-77 season's influ-
enza A/New Jersey/76 (swine flu) papers  116   ,   117   were published. Of 
these, 19 indicated equivalence or superiority,  115   ,   116   ,   118–134   but not 
with the sample sizes and analytical rigor of modern clinical tri-
als. Six studies found the ID route less immunogenic than the SC 
or IM route for some or all of the antigens studied,  117   ,   135–139   but 
some of these had attempted 10 to 1 dosage sparing. 

 When the ID route was compared with either the IM or the 
SC route using identical amounts of reduced antigen, the results 
conflicted with those of mid-century trials using the whole-cell 
products of that era. Bruyn and colleagues found GMTs in chil-
dren receiving 0.2 mL intradermally of influenza vaccine to be 

higher than in those receiving the same dosage subcutaneously,  121   
as did Davies and coworkers  140   and Tauraso and colleagues  131   
administering 0.1 mL by both routes. When administering by 
the ID route, one-tenth (0.1 mL) the SC dose (1.0 mL) in vary-
ing dilutions below the labeled dosage of 800 chick cell aggluti-
nating (CCA) units/mL, Stille and coworkers also found greater 
ID responses, but only when the SC dosage was low, at 8 or 0.08 
CCA (ID dosage: 0.8 and 0.008, respectively).  127   In contrast, SC 
responses exceeded ID ones when the standard SC dosage was 
used or reduced by only one log (80 CCA; ID, 80 and 8 CCA, 
respectively). This suggested a linear ID dosage-response curve, 
but a sigmoid SC one, which favored the ID route at the lower-
dosage end. On the other hand, when identical reduced dosages 
for a new shifted “Asian” strain were given by the two routes 
(80, 40, or 20 CCA, compared with 200 per full 1.0 mL), both 
McCarroll and colleagues,  141   studying hospital employees 18 to 
65 years of age, and Klein and coworkers,  142   studying infants 2 
months to 5 years of age, found little difference in responses 
between the ID and SC routes. McCarroll speculated that the 
ID superiority in earlier studies was the result of an anamnes-
tic effect not present that season. Klein simply doubted any ID 
superiority when equal volumes are used. 

 Regarding systemic reactions, among 101 infants from 2 
months to 2 years of age receiving 0.1 mL of influenza vaccine 
in the study by Klein and Huang, febrile reactions were reported 
among 34.7% (17/49) in the intradermal group and only 19.2% 
(10/52) in the SC group getting the same reduced dosage.  142   
Similarly, local reactions of small areas of erythema and indura-
tion with slight tenderness and itching within 2 to 3 days were 
described for “all” intradermal participants (ages 2 month to 5 
years,  N  = 96), whereas only 2 of 94 children vaccinated by the 
SC route had local pain and induration. Considering the entire 
reduced-dosage, ID influenza literature, this route might be con-
sidered when antigen shortages and distributive equity demand 
the use of the lower end of the dosage-response curve, where ID 
may outperform the SC or IM route. The increased reactions 
described in these whole-virus studies would perhaps be miti-
gated by use of today's less reactogenic split-virus products. 

 Twenty-five years after the final mid-20th-century ID influ-
enza studies, two papers were published simultaneously in 
2004,  88   ,   143   soon after several national shortages  144   had revived 
interest in dosage sparing.  145   ,   146   Among 240 hits on literature 
searches through May 2011 for intradermal influenza vaccina-
tion studies published since 1950, Young and Marra  147   culled 205 
that reported on nonseasonal vaccines (such as avian H5N1 or 
pandemic H1N1), or were duplicates or otherwise inappropri-
ate. From the remaining 35, they excluded 22, which were either 
animal studies, were nonrandomized, used obsolete whole-virus 
antigen, or assessed immunity outside the selected window of 21 
to 28 days after vaccination. They comprehensively compared 
the remaining 13 reports of split-virus studies, all from 2004 
onward among adults 18 years of age and older.  88–93   ,   96   ,   143   ,   148–152   
As in 20th-century reports, Young and Marra  147   found dosages 
40% to 80% smaller by the ID route in most studies to be com-
parably immunogenic with full 15- μ g dosages given intramuscu-
larly (seven of eight in the 18- to 60-year age range, four of six 
trials among those older than 60 years). ID superiority was found 
(without dosage sparing  90   ,   103  ) in the remaining two studies in the 
older group. As usual, local reactions were consistently more fre-
quent by the ID route. 

 Among published 21st-century ID influenza studies not 
included in the Young and Marra  147   review was a study of chil-
dren in Hong Kong given 2005–06 seasonal trivalent vaccine 
(Fluarix, GSK).  153   It found 0.1 mL ID dosages to be compara-
bly immunogenic to full 0.5-mL IM ones, with increased but 
tolerable induration and erythema after ID delivery. Another 
study in Texas administered investigational, monovalent avian 
A/H5N1 antigen to adults in dosages of 3 and 5  μ g by the ID 
route, and 15 and 45  μ g by the IM route.  154   All dosages less 
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than 45  μ g by either route induced very poor responses, whereas 
45  μ g by the IM route induced a fourfold titer rise and titers of 
40 or greater in 56% after two doses. 

 One multicenter study encompassed a range of four dosages 
of hemagglutinin per vaccine strain of the 2004–05 formulation 
of Fluzone, comparing 15  μ g by IM needle, 9 and 6  μ g intra-
dermally by Soluvia mini-needle syringe, and 3  μ g by Mantoux 
injection.  155   By GMT, the 6- and 9- μ g ID doses were non-inferior 
to the IM control for all three strains, but the 3- μ g ID dose was 
non-inferior only for the A/H3N2/Wyoming strain. Other studies 
of the Fluzone ID vaccine delivered by Soluvia mini-needle  89–93   
were described above (see “Reinventing the wheal”, earlier). 

 When low-dosage ID vaccine is compared only with full- dosage 
by the IM route, it cannot be ascertained whether a low dosage into 
the muscle (usually with fewer local reactions) would have per-
formed as well. Belshe and colleagues addressed that question 
by adding a third arm to a trial of low-dosage influenza vaccine 
by traditional Mantoux injection by the ID route, versus control. 
They found that low dosages by either the ID or the IM route were 
almost as immunogenic as the full-dosage IM control.  149    

  Poliomyelitis 
 In Salk's first clinical trials with inactivated polio vaccine, it was 
administered by the ID route,  156   ,   157   which was routinely used 
for millions of Danes in the mid 1950s,  158   ,   159   and responses in 
studies were good up to the early 1990s.  160–164   As polio eradica-
tion nears its goal, it will be necessary to remove from circula-
tion the live Sabin strains of oral polio vaccine (OPV), with their 
propensity to revert to virulence and to circulate from vaccinees 
to others, and to replace them with injectable, inactivated polio 
vaccine (IPV). However, the latter vaccine in full 0.5-mL dos-
ages costs about 20 times as much per dose as OPV, promoting 
a search for cost-saving strategies that also avoid the introduc-
tion of needles into the polio eradication program.  165   

 Recent clinical research in Oman sponsored by WHO and others 
found seroconversion rates equivalent to full dosages given intra-
muscularly when IPV was delivered intradermally by needle-free 
jet injectors in 0.1 mL dosage-sparing volumes into the skin to 
infants at 2, 4, and 6 months of age,  166   but GMTs were consistently 
lower. At the earlier ages of 6, 10, and 14 weeks, studied in Cuba, 
the ID responses were somewhat lower, perhaps from maternal anti-
body interference.  167   A study in the Philippines compared one-fifth 
 dosages by Mantoux injection with full dosages by the IM route at 
6, 10, and 14 weeks of age, finding inverse titers of 8 or greater to 
all three types in 99% to 100% of all participants, concluding that 
the reduced-dosage ID route was non-inferior to the IM route.  168   

 An Indian study of older children, 6 to 9 months of age, using a 
different investigational jet injector for ID delivery, deemed more 
than half of the injections “inadequate” because of a wheal diam-
eter of less than 3 mm, or because more than a “small drop” of 
vaccine remained on the skin surface.  169   Overall, seroconversion 
rates and GMTs to all polio types were lower by reduced-dosage 
by the ID route than by full IM dosages, especially for such “inad-
equate” injections. Another study in the Netherlands of the same 
device is underway. More are planned.  170    

  Yellow fever 
 The ID route was used extensively for the live attenuated yel-
low fever French neurotropic vaccine, which was given by ID 
scarification in the 1940s and 1950s in Francophone Africa (see 
    Chapter 38 ).  171   The 17D strain showed both good  172   and poor  173   
immune responses when jet-injected by the ID route. A recent 
review discussed evidence for dosage-sparing equivalence in 
skin using one-fifth the usual dosage.  174    

  Other conventional vaccines 
 Inactivated vaccines with good immune responses after ID injec-
tion include typhoid  175   and rabies.  99   ,   176–183   The latter has been used 
widely for dosage-sparing purposes in the developing world.  184   ,   185   

 Generally good results have been reported for ID 
 hepatitis B,  186–192   with exceptions when antigen mass was pre-
pared by a 10 to 1 reduction instead of the more common 5 to 1 
reduction for the ID route,  193   in infants,  194–196   and with recom-
binant vaccine.  197–199   A recent meta-analysis among five com-
parable, randomized clinical trials totaling 757 subjects (in 234 
published studies) found a “slight” (14%) decrement in seropro-
tection rates for hepatitis B by the ID route compared with the 
IM route.  200   In contrast, another meta-analysis found hepatitis 
B by ID route somewhat more immunogenic than by IM route 
among dialysis patients.  201   

 For meningococcal disease, one 1972 paper on group A vac-
cine  202   and unpublished data posted at ClinicalTrials.gov for 
a 2002 to 2004 study of the modern, non-protein-conjugated 
A/C/Y/W-135 combination (Menomune)  203   found good results. 
These two are the only reported studies of any polysaccha-
ride vaccines (including  Haemophilus influenza  type b, and 
conventional or conjugated pneumococcal) by the cutaneous 
route. 
 Mixed results for the ID route have been reported for cholera  204   
and hepatitis A vaccines.  205   ,   206   Other nonliving antigens studied 
rarely by this route include diphtheria-tetanus-pertussis,  207   ,   208   
tetanus,  209   ,   210   tetanus-diphtheria,  211   tetanus-typhoid,  212   ,   213   tick-
borne encephalitis,  214   ,   215   and Rift Valley fever.  216   Similarly mixed 
results were found for live measles vaccines by the ID route.  217–229    

  Investigational vaccines 
 In the mid to late 2000s, the ID route was pursued for a wide 
variety of investigational vaccines, including dengue,  230   human 
immunodeficiency virus (HIV),  231   malaria,  232   and tuberculo-
sis.  233   The ID route—as well as the IM—had led to the serendip-
itous discovery in an influenza model  234   that viral genes encoded 
into bacterial DNA could express their protein antigens in vivo, 
a seminal event in the modern era of recombinant nucleic acid 
vaccinology.  235   Gene proto-antigens to prevent influenza,  236   HIV 
or acquired immunodeficiency syndrome (AIDS),  237   ,   238   small-
pox,  239   and many other diseases are being inserted into both 
naked DNA/RNA  240   and various vectors such as modified vac-
cinia Ankara virus, for delivery by the ID route. ID jet injection 
has been used for immunomodulators such as interferon.  241      

  Novel methods to deliver antigen into the skin 

 Various commercial patch delivery systems developed since 
1981 have demonstrated the ability of certain therapeutic agents 
(eg, scopolamine, nitroglycerin, clonidine, estradiol, fentanyl, 
nicotine, testosterone) to diffuse passively into bare, untreated 
skin without the use of the active technologies or enhancers 
described in the following paragraphs.  54   However, such pas-
sive diffusion usually works only for small molecules with cer-
tain physical characteristics. Thus, there are but a few animal 
models of immunization onto bare, untreated skin.  242–244   Newer 
methods to facilitate antigen delivery to the epidermis involve 
painlessly stripping, abrading, scraping, piercing, vaporizing, 
shocking, vibrating, bombarding, and otherwise permeabiliz-
ing the barrier of the stratum corneum. Some methods com-
bine several processes. These have been detailed in reviews by 
others.  27   ,   29   ,   31   ,   33   ,   35–37   ,   39–43   ,   54   ,   60   ,   245–248   

  Stripping and abrading 
  Tape and friction 
 A variety of simple tools have been used to remove the stratum 
corneum. Common cellophane adhesive tape may be applied 
to the skin and pulled away, carrying away dead keratinocytes 
with each repetition. Such tape-stripping has been shown to 
enhance cytotoxic-T-cell and cytokine immune responses on 
subsequent application of various antigens and adjuvants to 
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the skin in mice.  249–255   Similarly, rubbing gauze, emery paper, 
electrocardiographic (ECG) pads, or pumice on the skin 
removes cells by their abrasive effects, and this has been found 
to enhance immune responses in humans.  256   Application of 
cyanoacrylate glue followed by stripping the skin to apply anti-
gen to the exposed hair follicles has been described,  257   but its 
practicality has been questioned.  37    

  Skin preparation system and transcutaneous immunization 
 Among methods that strip the skin, perhaps the most advanced 
is one that combines this step with the use of a remarkably 
potent adjuvant, the heat-labile enterotoxin (LT) of  Escherichia 
coli  (see “Bacterial exotoxins”, later). This effort was originally 
championed by Gregory M. Glenn, first at the Walter Reed 
Army Institute of Research, then at Iomai Corporation, and 
later at Intercell.  258   

 The vaccinator or the patient holds against the skin a device, 
the Skin Preparation System, developed by Ideo ( Figure 61-3A   ).  259   
With the push of a button and the pull of a tab, a controlled pres-
sure is applied to a sandpaper strip, which gently abrades and 
removes about 25% of the stratum corneum.  260   ,   261   Then, a patch 
containing LT as antigen alone, or containing LT as an adju-
vant for another antigen, is applied to the skin; the process is 
called  transcutaneous immunization .  262–265   LT alone is intended 
to induce immunity against enterotoxigenic  E. coli  (ETEC), the 
cause of traveler's diarrhea, or against  Vibrio cholera,  with  266   or 
without  267   ,   268   ETEC colonization factor. 

 An initial, randomized, blinded field trial among travelers to 
Guatemala and Mexico found 75% efficacy for the patch with 
LT alone in protecting from moderate to severe diarrhea.  269   In 
2010, Intercell reported mixed results from two follow-up field 
studies.  270   ,   271   In a pivotal phase 3 trial for travelers diarrhea 
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 Figure 61-3    Investigational Devices for Disrupting Stratum Corneum by Friction or by Penetration with Uncoated or Coated Solid 
Microneedles, for Potential Cutaneous Vaccination.    (A, left)  Investigational Skin Preparation System (SPS) for  transcutaneous immunization  
(Intercell AG,  258   originally developed by Iomai Corporation). Blue push-button requires the correct amount of abrasion pressure on the stratum 
corneum by a sandpaper-like strip pulled with the blue tab.  (A, right)  After the skin is abraded, the vaccine or adjuvant-containing patch is 
applied within guide marks of the temporary dye (not shown) left by the SPS to indicate the pretreated area. (Photographs by Andi Bruckner [ www.
andibruckner.com ] for Intercell AG, with permission; from Kim YC, Jarrahian C, Zehrung D, et al. Delivery systems for intradermal vaccination. Curr 
Top Microbiol Immunol 351:77-112, 2012 [Fig. 4a2-3, p. 97]).    (B)   3M Microchannel Skin System  is an uncoated microneedle device licensed in the 
United States in 2011 and elsewhere “to create microchannels in the skin” for dermatologic or other medical use.  295   ,   296   The device contains 351 
solid microneedles  (B inset) .  297   ,   298      (C)  Investigational Zosano Pharma  ZP Patch  (formerly Macroflux) applicator and patch.  (C, inset)  Scanning 
electron microphotograph of titanium tines, 330 μm in height, embedded in the patch, coated with drug or antigen, and applied into the skin. 
(From Sachdeva V, Banga AK. Microneedles and their applications. Recent Pat Drug Deliv Formul 5:95-132, 2011 [Fig. 2B, p. 105]. Inset from 
Matriano JA, Cormier M, Johnson J, et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous 
immunization. Pharm Res 19:63-70, 2002 [Fig. 1B, p. 64].)    (D, top)  Investigational BCG-coated microtines after 6  (D, left)  and 9  (D, right)  
coating cycles (Georgia Institute of Technology  323  ), by brightfield microphotography.  (D, bottom)  An array of five such microtines compared with 
a 26-gauge hypodermic needle and a US 10¢ coin, 18 mm in diameter. (From Hiraishi I, Nandakumar S, Choi S-O, et al. Bacillus Calmette-Guérin 
vaccination using a microneedle patch. Vaccine 29:2626-2636, 2011 [Figs. 1 and 3Aii,iii, pp. 2629, 2630].)    (E)  Investigational  Press&Patch  finger-
thumb device for applying ( <  30 sec) the  solid Microstructured Transdermal System  (sMTS) containing drug-coated or uncoated microneedles. 
3M Corporation. 297,319-321,294     (F, left,  and  F, middle) : Investigational Nanopatch  347   microneedle array of silicon, after application to mouse skin. 
Microprojections are 30  μ m wide at base and from 65 to 110  μ m in height, and    sputter-coated with 100 nm of gold. The red coating of antigen/
adjuvant elutes to reveal the original gold coating. (From Prow TP, Chen X, Prow NA, et al. Nanopatch: targeted skin vaccination against West 
Nile virus and Chikungunya virus in mice. Small 6:1776-1784, 2010 [Fig. 1-g/h, p. 1777].)  (F, right) : Cryogenic scanning electron micrograph 
of projection holes produced in mouse ear skin by Nanopatch. White arrow shows the indentation left by the shoulder on the microprojection. 
Scale bar, 100  μ m. (From Crichton ML, Ansaldo A, Chen X, et al. The effect of strain rate on the precision of penetration of short densely-packed 
microprojection array patches coated with vaccine. Biomaterials 31:4562-4572, 2010 [Fig. 3D, p. 4565].)    (Figure 61-3A, left and right, Andi Bruckner, 
Intercell AG;  43   61-3B, E, 3M Corporation;  294   61-3C, Zosano Pharma;  291   61-3C inset, Zosano Pharma;  305   61-3D, top left and right, Georgia Institute of Technology;  323   61-3D 
bottom;  335   61-3E, 3M Corporation;  294   61-3F, University of Queensland/Vaxxas.  351   ,   344  )   

http://www.andibruckner.com]
http://www.andibruckner.com]
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( N  = 2,036), again in Guatemala and Mexico, the trial's pri-
mary target endpoint of greater than 60% efficacy against mod-
erate to severe ETEC diarrhea was not met, finding only about 
35% protection. Nor was there an effect on the frequency of 
all causes of diarrhea. However, there was a 60% reduction in 
the incidence of LT-positive diarrhea of all degrees of severity, 
along with a significant reduction in duration and severity of all 
diarrhea causes. The patch also induced measurable immune 
responses and was well tolerated.  270   ,   272   

 In a smaller phase 2 trial in India ( N  = 723),  271   the LT patch 
also did not reach its targeted endpoint, perhaps because of a 
low attack rate (about 1%) for LT-positive ETEC. As a result of 
these two trials, Intercell discontinued work on the LT patch 
for traveler's diarrhea but still pursues its use with the Skin 
Preparation System device for other applications. 

 Applying the Intercell LT patch near the site of injection 
of parenteral influenza vaccine (an application referred to as a 
vaccine-enhancement patch) was found to improve hemagglu-
tination inhibition (HI) titers in the serum and mucosa of both 
young and aged mice,  273   ,   274   and to increase the HI titer or show 
an improving trend for adult volunteers older than 60 years.  275   
In May 2011, a partnership between Intercell and GSK  276   began 
enrolling 300 volunteers for a study to compare the patch with 
AS03 adjuvant in boosting responses to pandemic H5N1 influ-
enza vaccine.  277   

 In preclinical studies of other applications, use of LT or a 
structurally similar cholera toxin as cutaneous adjuvants 
resulted in improved immune responses or challenge protec-
tion in animal models for tetanus,  278   anthrax,  279   ,   280   malaria,  281   
 Helicobacter pylori,   282   and Shiga toxin–producing strains of 
enterohemorrhagic  E. coli .  283   

 In regard to safety, early clinical trials found no serious reac-
tions,  267   but pruritus and maculopapular rash at the patch site 
were found in 13%,  275   74%,  266   or 100%  268   of patients exposed 
to LT-containing patches for 6 hours, and in one study 17% of 
rashes progressed to vesicle formation.  268   Delayed-type hyper-
sensitivity contact dermatitis was observed when using recombi-
nant colonization factor.  266   Later clinical trials found the LT patch 
to be “well tolerated and consistent with previous studies”.  270   ,   272    

  Microrasps 
 Other methods take advantage of low-cost fabrication tech-
niques adapted from the microelectronics industry to convert 
silicon, metal, or other material into arrays of micrometer- to 
millimeter-size microrasps designed to abrade the stratum cor-
neum (as distinct from creating holes in it; see “Poking and 
piercing”, later).  31   ,   35   ,   39–41   ,   99   ,   284   One example is the  microenhancer 
array  (MEA, also known as Onvax), an investigational technol-
ogy that scrapes the skin before or after topical application of the 
antigen or therapeutic agent.  84   ,   285   The MEA consists of a square 
or round chip containing about 1-cm  2   area of silicon or plas-
tic microprojections mounted on a finger-held applicator.  22   ,   101   ,   247   

 Preclinical studies of the MEA device using mice inoculated 
with hepatitis B surface antigen (HBsAg) or DNA plasmids encod-
ing firefly luciferase found similar or greater immune responses or 
light emission, respectively, compared with control IM and exper-
imental ID injections. Anthrax rPA with alum or CpG adjuvants 
applied with the MEA device to mouse skin produced equivalent 
or better immune responses than IM controls (although not as 
good as an ID microneedle), whereas immune responses and chal-
lenge survival were significantly less among MEA-immunized rab-
bits compared with IM controls.  101   Among cynomolgus monkeys 
vaccinated by six “swipes” of the MEA, with SC and 34-gauge, 
microneedle-based ID controls, all animals seroconverted to an 
investigational recombinant Japanese encephalitis vaccine.  105   
Those vaccinated by swiping the MEA through a drop of vaccine 
already on the skin showed neutralizing antibody responses in 
the same range as the SC controls, whereas applying vaccine after 
the abrasion appeared to be less effective. 

 A clinical trial of the MEA measured transepidermal water 
loss (TEWL) as a surrogate indicator for removal of the stra-
tum corneum after each of five consecutive swipes across the 
same site on the volar forearm of volunteers. Projection heights 
of 100, 150, and 200  μ m showed steadily increasing rates of 
TEWL, with the tallest projections producing the greatest water 
loss. Control swipes with fibrous and sandpaper ECG pads 
showed little or no TEWL.  285   A human trial, however, in which 
rabies vaccine was applied before or after four “rubs” of the 
device over four separate deltoid skin sites did not detect any 
immune response after three dosings on days 0, 7, and 21.  99    

  Shaving and brushing 
 The razor and the brush can also remove layers of the stratum 
corneum. In a clinical trial of adenovirus vectors encoded to 
express influenza hemagglutinin antigen, the abdominal skin 
of 24 adults was shaved with a disposable, twin-blade razor, 
followed by “gentle brushing with a soft-bristle toothbrush for 
30 strokes” and application of the antigen with an occlusive 
Tegaderm patch.  286   Two doses 28 days apart at the highest dos-
age level produced fourfold rises in HI titer with 67% of the 
cutaneous vaccines (there was no control group receiving con-
ventional parenteral delivery of either the recombinant vaccine 
vector or a licensed inactivated influenza vaccine). Occasional 
mild erythema at the abdominal site was reported in 61% and 
rash or itching in 39% of patients. 

 This same research team,  287   studying mice, substituted an 
electric trimmer for shaving but otherwise used similar brush-
ing to demonstrate that topical application of nonreplicating  E. 
coli  vectors overproducing antigens for  Clostridium tetani  and 
 B. anthracis  were immunogenic.  288   ,   289   Control animals demon-
strated that depilation alone had little effect; what made the 
difference was the mild brushing, which produced minimal irri-
tation (Draize score, 1).  290   Others studying Japanese encephali-
tis vaccine in an animal model supplemented skin shaving with 
a commercial depilatory cream, followed by occlusion of the site 
with an impermeable covering.  291   The practicality of such steps 
in routine immunization of humans is uncertain.   

  Poking and piercing 
 As with cutaneous vaccination in general, a diverse terminology 
is applied to microscopic projections for perforating the superfi-
cial skin to deliver the drug.  31   ,   41   ,   43   ,   247   ,   248   ,   292   ,   293   In  addition to the 
most common term  microneedles,  terms such as  microblades, 
microknives, micropins, microtines, microtubes , and  nano-
patches  have been used. This chapter uses  microneedles  for the 
broad category of all such projections shorter than 1,000  μ m, 
reserving  mini-needles  for those of 1 mm or longer, whether solid 
or hollow (see “Mini-needles” and “Microrasps”, earlier). The fol-
lowing sections divide microneedles into functional subcategories. 

  Uncoated microneedles 
 Earlier, we described methods in which vaccine or drug is 
applied to the site after it is prepared. The 3M Corporation  294   
developed an uncoated microneedle device to prepare the skin 
by perforating it. Although not licensed (or even intended) for 
vaccine or drug, its  3M Microchannel Skin System  of micronee-
dles appeared on the US market in 2011 as a “pretreatment 
method for professional medical or cosmetic dermatologists to 
create microchannels in the skin” (see  Figure 61-3B ).  295   ,   296   Each 
application creates 351 holes through the stratum corneum 
into the epidermis.  297   ,   298   Other investigational technologies for 
uncoated microneedles are the MicroCor,  299   ,   300   the Functional 
MicroArray patch,  301   and the Micro-Trans.  302    

  Coated solid microneedles 
 A common strategy pursued by a number of commercial and 
academic teams to carry antigen across the stratum corneum 
is to coat it onto solid microscopic projections, which are held 
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for variable periods of time in the epidermal layer while antigen 
or other drug elutes and diffuses.  27   ,   30–32   ,   35   ,   39–43   ,   246–248   To date, only 
limited published data have demonstrated suitability for human 
vaccination, in contrast to therapeutic drugs. 

 One example of drug-coated microneedles that appears 
closest to marketing approval is the investigational Zosano 
Pharma  ZP Patch  platform (formerly known as Macroflux) (see 
 Figure 61-3C ).  303   Its titanium projections vary from 225 to 600  μ m 
in height and are packed into an area of 1 to 2 cm  2   at densities 
from 140 to 650 tines per square centimeter. They are inserted 
by a spring-mounted applicator and held in place by an adhesive 
patch. The most advanced applications for these microneedles are 
delivery of parathyroid hormone to treat osteoporosis,  304   already 
studied clinically, and erythropoietin to treat anemia. 

 Regarding vaccine applications,  305   a graph from a human 
study of Zosano Pharma's ZP-Flu influenza vaccine patch, 
applied for 5 or 10 minutes onto the skin, trended toward 
increased titers and seroprotection compared with an IM con-
trol injection  306   ,   307   (no further details were provided, nor could a 
public clinical trials registration be found). 

 A hairless guinea pig model was used to study ovalbumin 
on the patch's microneedles as a representative, large antigenic 
protein.  305   ,   308   It was administered in two doses 4 weeks apart. 
It induced post-booster titers comparable to those of control 
IM, SC, and ID Mantoux-style injections at higher dosages, 
and it surpassed IM and SC routes at lower dosages. Other pre-
clinical studies of the system demonstrated delivery of oligo-
nucleotides  309   and the peptide hormone desmopressin.  310   The 
company reports animal work with tetanus, diphtheria, Lyme 
disease, and hepatitis B (DNA) vaccine antigens. 

 Another coated-microneedle platform is the  solid mictro-
structured transdermal system  (sMTS),  26   ,   311–315   from 3M.  294   Its 
drug-coated pyramidal projections vary from 250 to 750  μ m 
height, in arrays of 300 to 1,500 microneedles mounted on an 
adhesive patch at a density of 1,300 per square centimeter.   315–318   
Application to the skin is by a manual finger-thumb  Press&Patch  
device  294   ,   297   ,   319–321   (see  Figure 61-3E ) or by a spring-powered appli-
cator, shown elsewhere.  22   Coatings of the microneedles are said 
to hold up to 0.5 mg of active pharmaceutical ingredient. 

 In a rabbit model, coatings of tetanus toxoid and alum adju-
vant in various ratios induced antibody levels an order of mag-
nitude higher than the presumed protective threshold ( >  0.2 IU), 
using just a fraction of the standard IM dosage.  322   Ovalbumin as 
a surrogate vaccine applied to hairless guinea pigs by sMTS using 
the  Press&Patch  applicator was reported to induce antibody, as 
measured by enzyme-linked immunosorbent assay, equivalent 
to that induced by IM-needle injection.  319   A second study using 
hairless guinea pigs compared three doses of 1.5  μ g of HBsAg by 
sMTS ID and by IM injection; at 8 weeks, after two doses, sero-
conversion was 100% and GMT was 158 for the ID route, and 
20% and GMT 0 for the IM route.  320   After dose 3, seroconversion 
for IM rose to 80% and GMT to 34, while the ID route remained 
at 100% and GMT rose to 410. In swine, a model virus-like pro-
tein (HBsAg) demonstrated dosage sparing via sMTS compared 
with antigen delivered by IM control route.  321   

 Experimental placement of the sMTS microneedles device 
on human volunteers found it to be “well-tolerated” and “non-
intimidating and not painful”.  315   A more recent public registra-
tion described a safety trial without antigen.  296   Otherwise, no 
further clinical data were found in public registries or reports. 

 The Georgia Institute of Technology (GA Tech),  323   a pio-
neering center for microneedle technology, has worked with 
Emory University to conduct numerous studies of coated 
 microneedles  247   ,   324   in animal models for cutaneous  vaccine 
delivery. In a series of murine studies using solid metal 
microneedles coated with inactivated influenza viruses, cuta-
neous vaccination induced robust immune responses—often 
better than equivalent dosages in controls injected by the SC 
route—as well as protection against lethal viral challenge.  325–334   

 When coated with BCG, the same microneedle platform (see 
 Figure 61-3D ) was highly immunogenic in guinea pigs, with 
robust cell-mediated responses in lungs and spleen compara-
ble to those with Mantoux injection.  335   Similarly, plasmid DNA 
antigen for hepatitis C, coated on 500- μ m-long needles, primed 
specific cytotoxic T lymphocytes in vaccinated mice more read-
ily than did typical “gene gun” delivery  336   ,   337   or conventional 
needle.  338   Inactivated rotavirus vaccine—developed to avoid the 
inhibitory effect of breast milk on live, oral vaccines  339  —was 
coated onto this microneedle platform and found immunogenic 
in an animal model.  340   

 For most of these formulations prepared at GA Tech, a key 
ingredient of the carboxycellulose matrix of the dried coating 
was trehalose, one of several sugars, including sucrose, that 
have been found useful in protecting protein antigens from 
damage by drying and freezing, and thereby improving vaccine 
thermostability.  341   

 Another center for microneedle research, in Australia,  342   
developed a novel nitrogen gas jet-drying method for coating 
antigen onto silicon that overcomes the challenges of  dip-coating 
closely spaced projections,  324   ,   343   ,   344   but it still elutes within 2 to 
3 minutes upon skin entry (see  Figure 61-3F ). It has achieved 
1/30th to 1/100th dosage sparing compared with the IM route 
in a mouse model for influenza.  345   ,   346   Other antigens studied 
with good results in murine models with this platform—called 
the Nanopatch and recently transferred to industry  347  —include 
human papillomavirus,  348   herpes simplex type 2,  349   ,   350   and the 
West Nile and chikungunya viruses.  351   

 Coulman and coworkers studied nanoparticles and DNA 
plasmids expressing  β -galactosidase and fluorescent proteins 
applied to the epidermal surface of ex vivo human breast skin 
donated at mastectomy.  352   After applying the microneedles to 
the skin for 10 seconds, they were able to verify epidermal pene-
tration and gene expression by a variety of histologic and photo-
metric means. Later work by this Welsh group reported decreased 
pain in clinical studies with 180- μ m and 280- μ m microneedles 
compared with the 25-gauge conventional  needle,  353   as well 
as morphologic changes suggestive of immune activation in 
human Langerhans cells after intradermal injection of influ-
enza virus–like particles into excised human skin.  354   This group 
also found that both public and private immunization provid-
ers were positive, in focus-group discussions, toward micronee-
dles as a change from conventional needle-syringe delivery.  355   
Research on and development of coated microneedles for vacci-
nation are also underway by many other groups.  292   ,   293   ,   302   ,   356    

  Dissolving microneedles 
 An elegant strategy to decrease risk from intentional reuse 
of, or inadvertent contact with, used microneedles is for the 
sharps to dissolve in the skin with hydration, thus releasing 
the antigen.  32   ,   43   ,   357–361   The most common matrix for dissolvable 
microneedles hard enough to penetrate skin is carboxymethyl-
cellulose, “generally recognized as safe” for parenteral delivery 
by the FDA, among other compounds.  357   ,   358   Chu and Prausnitz 
molded arrowhead-shaped antigen carriers of blended polyvinyl 
alcohol and polyvinylpyrrolidone, and mounted them on metal 
shafts ( Figure 61-4A   ).  358   The lower corners of the “arrows” 
act as barbs to keep the carrier in the skin when the patch is 
removed, which is done immediately. From the same group 
at GA Tech and Emory, Sullivan and coworkers encapsulated 
inactivated influenza vaccine virus into biocompatible polymer, 
which dissolved within minutes after its application to mouse 
skin (see  Figure 61-4B ).  359   Robust antibody and cellular immune 
responses provided complete protection from lethal challenge. 

 Several sugars, such as trehalose, sucrose, and maltose, have 
been found to be key ingredients in stabilizing and maintaining 
the potency of antigen during the process of forming dissolv-
able microneedles,  341   ,   362   ,   363   but thermostability studies have not 
yet been reported to assess whether such formulations would 
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resist heat degradation and allow transport and storage outside 
the cold chain.  364   A hydrogel polymer is proposed by Corium 
International as a binder-cum-adhesive for active pharmaceuti-
cal ingredients, and it will dissolve with delivery into the skin.  299   
In Japan, CosMED markets a cosmetic MicroHyala micronee-
dle array containing hyaluronate, which dissolves in 60 to 90 
minutes,  365   and vaccine applications are planned. Many others 
also pursue dissolvable microneedles.  366   ,   367    

  Hollow Microneedles 
 Hollow microprojections of similar sub-millimeter lengths to 
those of the solid ones just described are designed to inject 
therapeutic liquids through their tiny lumens.  29   ,   40   ,   43   ,   247   ,   368   

(In this chapter, only needles less than 1 mm long are clas-
sified as  microneedles , as opposed to the still-small but lon-
ger  mini- needles , such as those in the Soluvia system [see 
 Figure 61-2H ]—see “Reinventing the wheal”, earlier.) Although 
harder to manufacture and more easily broken and clogged,  247   ,   284   
flow rates of microneedles have been measured up to a remark-
able 1 mL per minute per cannula.  369   Common lengths of 200 
to 500  μ m are short enough, in theory, to be painless, as they 
would not reach nerve endings in the dermis.  31   ,   353   ,   368   ,   370   However 
the quite perceptible stretching of skin with the injection of liq-
uid may eliminate any such advantage. 

 The MicronJet 600 device  371   is unique in its availability as a 
licensed, sterile, disposable device for end users to inject  liquids 
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 Figure 61-4    Dissolving and Hollow Microneedles, Electromagnetic Devices, and Kinetic Devices for Potential Cutaneous 
Vaccination.    (A)  Investigational dissolving 600- μ m-tall “arrowhead” microneedle composed of polylactic co-glycolic acid (PLGA) encapsulating 
sulforhodamine B color indicator, atop 300- μ m-tall metal shaft base shaft. (From Chu LY, Prausnitz MR. Separable arrowhead microneedles. 
J Control Release 149:242-249, 2011 [Fig. 6A, p. 247].)    (B)  Investigational dissolving microneedle of biocompatible formulation material 
containing sulforhodamine B before (top) and after (bottom) skin insertion, demonstrating disintegration upon exposure to tissue moisture 
(Georgia Institute of Technology  323  ).    (C)  MicronJet adapter with Luer fitting onto conventional syringe for ID delivery via hollow MicroPyramid 
microneedles (inset) (NanoPass Technologies Ltd.  371  ). Cleared for marketing in the European Union and the United States. The blue line on 
the hub indicates to the user that the bevel and lumen of the microneedle needle are on the opposite side.  (C, inset)  Microphotograph shows 
the pyramidal shape and lumen of an individual microneedle. (From Prausnitz MR, Mikszta JA, Cormier M, et al. Microneedle-based vaccines. 
Curr Top Microbiol Immunol 333:369-393, 2009 [Fig. 4 right, p. 375]), and from Van Damme P, Oosterhuis-Kafeja F, Van de Wielen M, et al. 
Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 27:454-459, 
2009 [adapter, Fig. 1, p. 455; MicroPyramid, Fig. 2A, p. 456].)    (D)  Investigational PassPort thermoporation device and patch applied to patient 
arm. Heat induced by the device in metallic filaments embedded in the patch creates micropores in the stratum corneum for subsequent entry 
of drug within the patch (Altea Therapeutics  400  ).    (E)  Investigational  Hollow Microstructured Transdermal System  (hMTS) injection system (3M 
Corporation). 294,313,376,314   (E, left)  The wearable device is fixed by adhesive to skin. On activation, prefilled liquid drug is forced over 5 to 40 
minutes through lumina of  (E, bottom center)  18 microneedles of  (E, bottom right)  500 to 900  μ m height. Blue button (“A” in  E, upper right  
schematic) releases spring “C”, triggering piercing of glass dose chamber “B” and transfer of liquid into reservoir of patch, which is applied 
to skin by delivery spring “F”, and held in place by adhesive “D”. (From Hansen K, Burton S, Tomai M. A hollow microstructured transdermal 
system (hMTS) for needle-free delivery of biopharmaceuticals. Drug Deliv Technol 9:38-44, 2009 [Figs. 1, 2, pp. 38, 40]; and from Burton SA, Ng 
CY, Simmers R, et al. Rapid intradermal delivery of liquid formulations using a hollow microstructured array. Pharm Res 28:31-40, 2011 [Figs. 1, 
2, p. 33].)    (F)  Investigational Particle-Mediated Epidermal Delivery (PMED) device (PowderMed  441  ) propels (usually gold) microparticles coated 
with (usually DNA) antigen into skin using a stream of supersonic helium gas.    (G)  Investigational  Solid Dose Injector  (SDI) from Glide Pharma  472   
is powered by a metal spring, which is compressed and released as the disposable drug cassette (white component extending beyond 
blue hub) is pressed fully against the skin. It shoots a  (G, inset)  pointed, hardened, ~ 1-mm-diameter drug formulation (shown compared 
with conventional matchstick tip) into subcutaneous tissues, where it dissolves.  473   ,   474      (Figure 61-4A, courtesy of Leonard Chu, Georgia Institute of 
Technology;  323   ,   358   61-4B, courtesy of Georgia Institute of Technology  323   [Jeong-Woo Lee]; 61-4C, courtesy of Bruce G. Weniger; 61-4C inset;  41   ,   150   61-4D, Altea 
Therapeutics;  400   61-4E, 3M Corporation;  294   ,   313   ,   314   61-4F, PowderMed;  441   61-4G, Glide Pharma.  472  )   
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for cutaneous delivery. It consists of three hollow 600- μ m-tall 
microneedles of beveled pyramidal shape mounted on an 
adapter with Luer interface for fitting onto a conventional 
syringe for liquid vaccine or drug (see  Figure 61-4C ). In 2010, 
it was cleared by the FDA for injection of any drug approved for 
ID delivery. It also holds a CE mark for marketing in Europe. 

 Adult volunteers vaccinated intradermally by a similar 
MicronJet version (four microneedles of 450  μ m height each) 
received reduced 3 or 6- μ g-per-strain single doses, or full 15- μ g 
doses by IM route, of licensed alpha-RIX (Fluarix, GSK) 2007–
08 seasonal influenza vaccine. By day 21, all three study arms 
developed comparable increases in GMTs and satisfied European 
criteria  372   for relicensure of seasonal influenza vaccines in full.  150   
Local reactions were more frequent than by the IM route, but 
they were mild and transient. Similar dosage-sparing trials for 
2009–10 monovalent H1N1 influenza vaccine  373   and 2010–11 
trivalent vaccine  374   confirmed comparable or superior immune 
responses for the ID route versus IM.  375   

 Another hollow microneedle system is 3M's  hollow micro-
structured transdermal system  (hMTS).  26   ,   294   ,   311   ,   313   ,   314   ,   376   Its 
patient-contact surface contains 18 microneedles of 500 to 
900  μ m in length, whose lumina of 10 to 40  μ m in diame-
ter deliver liquid volumes ranging from 0.3 to 1.5 mL (see 
 Figure 61-4E ). A spring-powered device contains liquid drug 
prefilled into a glass dose chamber. Upon triggering, the stop-
per of the chamber is pierced by a spike, through which the 
dose passes and is forced slowly over a period of 5 to 40 min-
utes through the microneedles into the skin of the upper arm 
or thigh. Adhesive on the patch keeps the system in place until 
delivery is complete. Delivery of equine tetanus antitoxin to 
swine as a model for delivery of monoclonal antibodies resulted 
in pharmacokinetic profiles of tetanus antitoxin similar to dos-
ages via SC injection.  376   Other groups have also pursued hollow 
microneedles.  22   ,   302   ,   356    

  Tattoo technology 
 Preclinical studies using commercial cosmetic tattoo machines 
delivered experimental DNA vaccine antigens on multineedle 
arrays (eg, nine), vibrating at frequencies of up to 100 Hz for 
durations of 5 to 20 seconds, resulting in thousands to tens 
of thousands of skin piercings per dose.  377   ,   378   Whether such a 
potentially painful delivery method would be practical, eco-
nomical, or esthetically acceptable for human vaccination, as 
well as advantageous over other methods for cutaneous delivery, 
remains to be demonstrated.  379     

  Electromagnetic energy 
 The use of light or electricity, or the heat or radiation they 
produce, has been pursued to facilitate entry of drug into the 
skin, either during a brief or constant application of energy, or 
through the pathways created after a short pulse. 

  Laser light 
 Laser light has been used in various ways to breach the stra-
tum corneum. In one technique, a brief pulse ablates this layer, 
after which drugs are applied directly onto the exposed epider-
mis, often with an occlusive patch, for the few hours until the 
stratum regenerates.  29   ,   35   ,   54   ,   380–383   The LAD (laser-assisted drug 
delivery) device generates an erbium-doped yttrium-aluminum-
garnet (YAG) laser beam whose energy is highly absorbed by 
skin.  382   ,   384   It was shown in adult volunteers to facilitate the 
anesthetic effect of the topical application of lidocaine,  382   and it 
is licensed in the United States and Australia for that purpose. 

 A new system focuses the laser beam to create 150 pores 
per activation, with claimed pore diameters of 200  μ m and 
selectable depths of 30, 60, or 90  μ m, which should remain 
in the epidermis, not reaching dermal nerve endings.  385   ,   386   
Another method uses a high-power pulsed laser to create a 
photomechanical wave that drives particles representing drug 

 carriers through the stratum corneum.  387–389   Clinical studies for 
intended vaccination using all such laser methods have not yet 
been reported.  

  Electrophoretics 
  Iontophoresis —first demonstrated a century ago in rabbits  390  —
involves an electric current to drive charged molecules from an 
electrode of the same charge toward another of opposite charge 
located elsewhere on the body.  31   ,   32   ,   35   ,   54   ,   391–395   Some licensed devices 
apply this technique for skin anesthesia.  303   ,   396   A related method 
is  electro-osmosis,  which induces a flow of solvent to carry 
uncharged molecules.  245   ,   397   Voltages greater than 1 volt in them-
selves increase skin permeability, perhaps by opening up pathways 
along hair  follicles. But these techniques do not work well with 
larger  molecules, which characterize many vaccine antigen proteins.  

  Thermoporation and electroporation 
  Thermoporation , also termed  microporation,  uses heat to 
vaporize tiny openings in the stratum corneum.  31   ,   32   ,   54   ,   398   ,   399   In 
the PassPort system,  26   ,   400   this heat is generated by a disposable 
array of metallic filaments held momentarily against the skin 
by a device the size of a computer mouse (see  Figure 61-4D ). At 
activation, electric pulses are induced to heat the filaments. An 
adhesive patch containing vaccine or therapeutic agent is then 
applied over the micropores just created. In a hairless mouse 
model, this technique elicited 10 to 100-fold greater cellular and 
humoral responses to an adenovirus vaccine than intact skin, 
as well as 100% protection to surrogate tumor challenge (27% 
for intact skin).  398   In the same model, adenovirus-vectored mel-
anoma antigen applied to the micropores roughly doubled the 
average onset time of tumors after challenge, and it protected 
one of six mice, compared with none of eight vaccinated controls 
with intact skin. Microporated recombinant influenza H5 hem-
agglutinin protected BALB/c mice from challenge with a lethal 
H5N1 strain.  401   Skin micropores also permitted the passage of 
insulin in pharmacokinetic human trials with historical con-
trols,  402   ,   403   and in the other direction allowed interstitial fluid to 
be extracted for potential glucose monitoring.  404   

 Another device similarly generates micropores with heat 
induced by radiofrequency waves (ViaDerm).  26   ,   405   A different 
technique uses short, 100- μ sec pulses of superheated steam in 
microliter amounts to remove the stratum corneum.  406   Without 
apparent effect on deeper skin elements in a human cadaver 
model, this resulted in 1,000-fold in vitro increases in perme-
ability to sulforhodamine B and bovine serum albumin as sur-
rogate molecules for drug or antigen. 

  Electroporation  uses very short electrical pulses to produce 
in the intercellular lipid matrix of the stratum corneum tem-
porary pores of nanometer-range diameters, which remain 
open and permeable for hours.  31   ,   407–412   In vitro and in vivo pre-
clinical studies of this technique demonstrated skin entry of 
larger molecules, such as heparin (12 kDa), peptides, proteins 
(such as luteinizing-hormone-releasing hormone), and nucleic 
acids,  392   ,   398   ,   413–415   with    potentially extensive use for investiga-
tional DNA vaccines in animals and humans.  416   

 The Easy Vax  417   and related Derma Vax epidermal electropora-
tion systems combine the application of antigen or drug-coated 
2-mm-long mini-needles, followed by electroporation. Smallpox 
antigen in plasmid DNA was dried onto the tips of arrays and 
inserted into the skin of mice, and when followed by six elec-
tric pulses, it induced protection from smallpox challenge.  418   
A prostate cancer DNA vaccine was similarly administered.  419   
Electroporation by the IM route is also pursued to enhance vac-
cination with DNA antigens.  412   ,   420   ,   421   A hollow needle injects the 
drug conventionally into muscle, while parallel solid needles sur-
rounding the injected dose create the current to generate pores 
in the target muscle tissue. Investigational or marketed products 
are CythorLab,  422   Easy Vax,  417   Electrokinetic Device,  423   ECM,  424   
MedPulser,  420   ,   421   ,   425   and TriGrid,  426   ,   427   among others.   
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  Sound energy 
 To facilitate drug or antigen delivery, the connection between 
keratinocytes can be solubilized by ultrasonic waves and 
short-duration shock waves.  29   ,   31   ,   32   ,   35   ,   245   ,   428–430   These are the-
orized to induce cavitation—the formation and collapse of 
 microbubbles—which disrupts the intercellular bilayers in the 
stratum corneum. Low frequencies ( <  100 kHz) appear to work 
better than the higher frequencies used in therapeutic ultra-
sound ( >  1 MHz). Transdermal tetanus toxoid immunization of 
mice was enhanced 10-fold compared with the SC route when 
subjected to ultrasound at 20 kHz.  431   High-molecular-weight 
molecules delivered include insulin, erythropoietin, interferon, 
and low-molecular-weight heparin.  31   ,   429   ,   432   ,   433   Various groups are 
pursuing ultrasound for enhanced drug delivery.  384   ,   434   ,   435    

  Kinetic deposition 
 The transfection of cells by kinetic methods to deposit DNA-
coated gold particles into them was pioneered in the 1980s.  436   
The Helios or PDS 1000/HE gene guns  336   and the Accell injec-
tor  337   have become standard bench tools for biolistic delivery of 
nucleic acid plasmids into a wide variety of plants and animals 
to transfect them to express the coded genes.  42   ,   437   ,   438   Delivery 
of DNA into the skin overcomes the usual polarized T-helper 
cell type 1 (Th1) response when DNA is delivered into mus-
cle.  30   ,   439   ,   440   These devices are unavailable for human vaccina-
tion (patent rights are held by PowderMed  441  ). Documenting the 
safety of DNA as an antigen by any route remains a major regu-
latory obstacle for such a paradigm shift in human vaccination.  30   

  Powder or particle technology 
 The proprietary terms  epidermal powder immunization  (EPI) 
and  particle-mediated epidermal delivery  (PMED) refer to the 
use of helium gas to blow powdered proteins, polysaccharides, 
or inactivated pathogens (EPI) or DNA-coated particles (PMED) 
into the epidermis at supersonic speeds.  442   This unique method 
of vaccination was developed in the early 1990s by Oxford 
BioSciences, which over the years was renamed PowderJect, 
acquired by Chiron,  443   spun off as PowderMed,  441   and finally 
acquired by Pfizer  444   in 2006. Delivery is by either reusable 
(XR series) or single-use disposable (ND series) devices (see 
 Figure 61-4F ), with the latter targeted for commercialization. 

 Conventional protein antigens for delivery by EPI are spray-
dried into powders of suitable density and size (20 to 70  μ m),  445   ,   446   
but the economics of manufacturing such formulations may be 
an obstacle.  30   For DNA vaccines delivered by PMED, plasmids 
coding for desired antigens are coated onto gold beads (1 to 
3  μ m in diameter) and, when deposited into epidermal antigen- 
presenting cells, they are eluted and transcribed.  447   A number 
of preclinical studies in various animal models have been 
 conducted.  442   ,   445   ,   448   ,   449   

 Human trials of DNA vaccines containing up to one order 
of magnitude less antigen than the amount used for IM routes 
have induced humoral and cellular immune responses for hepa-
titis B in subjects both naïve and previously vaccinated with 
conventional vaccine.  450–453   PMED vaccination has also been 
studied for DNA priming in trials of malaria vaccine,  454   ,   455   has 
produced seroprotective immune responses by DNA vaccine 
for seasonal strains of influenza,  83   ,   456   and has reduced influenza 
symptoms and viral shedding after human challenge.  457   Clinical 
trials still ongoing or unpublished are studying antigens for H5 
avian influenza (DNA),  458   herpes simplex virus 2,  459   HIV and 
non–small cell lung cancer.  460   ,   461   

 In the hepatitis B and influenza trials cited earlier, there were 
no severe local reactions, but erythema, swelling, and flaking or 
crust formation occurred in nearly all subjects, albeit resolving 
by day 28. Skin discoloration, however, persisted through day 
56 in 29 (97%) of 30 subjects,  453   through day 180 in 21 (25%) 
of 84 injection sites,  236   and beyond 12 months in 5 (25%) of 20 

patients with long-term follow-up.  453   No anti-double-stranded 
DNA antibodies were detected. The deposition of the gold par-
ticles was studied in pigs, in which most were deposited in the 
stratum corneum and epidermis and were eventually sloughed 
by exfoliation by 28 days.  462   At days 56 and 141 after adminis-
tration, a few particles remained in the basal epidermal layer 
and in macrophages in the dermis and regional lymph nodes. 
Six clinical trials of PMED were initiated in 2006 and reported 
complete by 2007 or 2008 for delivery of investigational herpes 
simplex type 2 vaccine; seasonal, pandemic, and trivalent DNA 
influenza vaccines; and hepatitis B vaccine.  463   Results were not 
yet published as of January 2012. 

 Preclinical studies of EPI or PMED in murine, porcine, and pri-
mate models have shown immunogenicity or protection for either 
powdered or DNA plasmid antigens for various other patho-
gens, including Eurasian encephalitic viruses,  464   hantaviruses,  465   
HIV,  466   ,   467   influenza H5N1,  448   malaria,  468   SARS coronavirus,  469   
smallpox,  470   and Venezuelan equine encephalitis.  471    

  Other kinetic and thermal methods 
 Another delivery method, termed needle-free  solid dose 
injector  (SDI), is from a British firm, Glide Pharma (see 
 Figure 61-4G ).  26   ,   472–474   It uses a spring-loaded device to quickly 
push into SC tissue a sharp, pointed, biodegradable “pioneer 
tip” and the solid or semisolid medication behind it in the 
chamber—both about the width of a grain of rice. 

 Microscission involves a stream of gas containing tiny crys-
tals of inert aluminum oxide to bombard small areas of the skin. 
A mask on the skin limits the sandblasting effect to narrow 
areas, so channels are created in the stratum corneum to which 
drug is then applied.  475   Another method uses a fast and power-
ful contractile fiber-activated pump to fire drug at the skin with 
sufficient velocity to penetrate the epidermis.  384   A miniaturized 
form of traditional jet injection uses piezoelectric transducers to 
propel liquid microjets into the skin.  476     

  Adjuvants and enhancers for cutaneous vaccination 
 As bathers notice in their fingertips, prolonged wetting of the 
skin, or occluding it to hold in body moisture, produces fluid 
accumulation in intercellular spaces and swelling of the kerati-
nocytes, which permits enhanced passage of applied agents.  256   
Rubbing the skin with acetone also enhances antigen passage by 
extracting epidermal lipids.  251   

  Bacterial exotoxins 
 Discovery of the remarkable adjuvant effect of bacterial ADP-
ribosylating exotoxins, such as the B (binding) subunits of 
cholera toxin and the structurally similar, heat-labile toxin of 
enterotoxigenic  E. coli,  has prompted much interest in using 
these to enhance cutaneous delivery.  39   ,   244   ,   477–484   The group that 
has progressed the furthest in clinical trials is Intercell,  258   the 
successor to pioneering work begun by the US Army and then 
by Iomai (see “Skin preparation system and transcutaneous 
immunization”, earlier). Another group used cholera toxin as 
an adjuvant when administering influenza vaccine to mice with 
skin pretreated with microneedles.  485   

 For safety reasons, these toxins have been engineered, or 
mutants selected, to reduce toxicity while retaining adjuvan-
ticity.  482   ,   486–488   Nevertheless, one such use as adjuvant in a 
licensed, Swiss-made intranasal influenza vaccine was hypoth-
esized as the cause of temporary paralysis of the seventh cranial 
nerve (Bell's palsy), prompting market withdrawal.  46    

  Chemical, protein and colloidal enhancers 
 Chemical penetration enhancers under consideration as skin 
adjuvants, alone or in conjunction with iontophoresis, ultra-
sound, or electroporation methods, include oleic and retinoic 
acids,  255   dimethylsulfoxide (DMSO), ethanol, limonene, poly-
sorbate, and others.  31   Flagellin, a bacterial surface component 
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protein, was engineered to express influenza nucleoprotein epit-
ope and applied to the bare skin of mice, inducing virus-specific 
interferon-gamma T cells.  244   Certain colloids may serve as 
antigen carriers.  33   Deformable lipid vesicles (“transfersomes”) 
containing tetanus toxoid applied to animal skin yielded com-
parable immune responses with alum-adjuvanted tetanus tox-
oid given by the IM route.  489     

  Combination methods 
 Other novel methods of delivery include the use of short nee-
dles to poke an initial opening into the skin, followed immedi-
ately by SC or IM jet injection with much lower pressures than 
otherwise would be needed.  490   ,   491      

  Jet injection 

  History and applications 

 Jet injectors (JIs) squirt liquid under high pressure to 
deliver medication without needles into targeted tissues 
( Table 61-1 ).  22   ,   492–521   The technology was invented in France 
in the 1860s ( Figure 61-5A   ),  492   ,   522   ,   523   a patent was filed 
for in 1936,  524   and it was reintroduced in the 1940s as the 
Hypospray  525–527   for patient self-injection with insulin (see 
 Figure 61-5B ). In the 1950s, the US military developed a high-
speed system (see  Figure 61-5C ), which was imitated by others 
(see  Figure 61-5D,E,F,G,I ), and the units were once referred to as 
jet guns for mass vaccination programs.  528–532   Over the past half-
century, JIs have been used to administer hundreds of millions, 
if not billions, of vaccine doses for mass campaigns in humans 
against smallpox,  1   ,   533–538   measles,  533   ,   535   ,   538–541   polio,  531   ,   542   menin-
gitis,  543–545   influenza,  546   ,   547   yellow fever,  533   ,   538   ,   548   ,   549   cholera  550   and 
other diseases.  21   ,   542   ,   543   ,   551–554   During the swine influenza mass 
campaign of 1976–77 in the United States, a substantial pro-
portion of the approximately 43 million doses administered that 
season  555   were by JIs (CDC, unpublished data).  555   ,   556   

 JIs have also been used for a wide variety of therapeutic drugs, 
including local  557   ,   558   and pre-general  559   ,   560   anesthetics,  561   antibiot-
ics,  562   ,   563   anticoagulants,  564   ,   565   antivirals,  566   ,   567   corticosteroids,  568   ,   569   
cytotoxics,  570   immunomodulators,  241   ,   571    insulin  526   ,   572   ,   573   and other 
hormones,  574–576   and vitamins.  577   Veterinary models for agricul-
tural use are widespread.  578   In recent years, the devices have 
been used to administer various antigens to both humans and 
animal models for a variety of investigational vaccines, includ-
ing dengue,  230   ,   579–581   herpes simplex type 2,  582   HIV/AIDS,  231   ,   583   ,   584   
Japanese encephalitis,  585   malaria,  232   and melanoma.  586   

  Occupational and patient safety, economics 
 Increasing concern for needle-stick injuries and possible trans-
mission of bloodborne pathogens to health workers, as well as 
the more expensive needle-shielding syringes that occupational 
health regulations now require to reduce the risk of injury,  587   
have boosted interest in JIs in developed countries.  588   Another 
economic factor is the high cost of proper disposal of highly reg-
ulated sharps waste, which is not required for used JI syringes 
(see “Disposable-syringe jet injectors”, later). As the latter may 
be soiled with blood or tissue fluid, they should be discarded 
with conventional red-bag medical waste, along with used ban-
dages and similar materials.  587   

 For many developing countries, where inadvertent or inten-
tional reuse of nonsterile needle-syringes is a serious prob-
lem,  10   ,   11   modeling indicated significant cost savings for the use 
of needle-free JIs compared with needle-syringes, especially 
when the indirect costs of iatrogenic disease resulting from the 
latter were included.  589   ,   590   (Current best practice aims for all 
vaccination syringes in these countries to be auto-disabling to 
prevent reuse,  591   but this goal is far from achieved.  592  )   

  Mechanical and clinical aspects 

  Designs, power supplies, types 
 Common features of all JIs include a dose chamber of sufficient 
strength to hold the liquid when pressurized, a moving pis-
ton at the proximal end to compress the liquid, and a tiny ori-
fice (commonly ~ 0.12 mm in diameter, ranging from 0.05 to 
0.36 mm)  495   ,   593   at the distal end to focus the exiting stream for 
delivery into the patient. The pistons of the majority of mod-
ern JIs are pushed by the sudden release of energy stored in a 
compressed metal spring, and a few use compressed gas such as 
CO 2  or N 2  (see  Table 61-1 ). Investigational JIs are powered by 
the expanding pressure of chemical combustion, a technology 
similar to that found in automotive safety air bags,  84d,    302   ,   594   ,   595   
as well as by Lorentz-force electromagnetic induction.  595a   

 The source of energy to compress the spring is usually sup-
plied manually or pedally through an integral or separate tool 
to apply mechanical advantage or hydraulic pressure. A few use 
electrical power from batteries or wall (main) electrical current. 
An experimental JI system controlled by electronic micropro-
cessors has been proposed,  596   but its cost and practicality for 
routine immunization remain unknown. 

 Although devices vary, peak pressures in the dose chambers 
range from 14 to 35 megapascals (~ 2,000 to 5,000 psi) and 
occur quite early so that the stream can puncture the skin. After 
the peak, pressures drop about one third to two thirds during a 
descending plateau phase until rapid tail-off at the end of the 
piston's stroke. The velocity of the jet stream exceeds 100 m/
sec.  597   Complete injection lasts about 1⁄3 to 1⁄2 a second, depend-
ing on the volume delivered, the orifice cross-section, and other 
variables. 

 JIs can be classified in many ways: by their energy storage 
and sources, by intended market (human versus veterinary), by 
intended usage (eg, repeated self-administration of insulin by 
the same patient versus vaccination of consecutive patients), 
by how the dose chamber is filled (medication vial attached “on 
tool” versus filled “off tool”), by reusability of the entire device 
(single-use disposable versus reusable), and by reusability of the 
fluid pathway and patient-contact components (multiuse ver-
sus disposable). This last criterion results in a key distinction 
between multiuse-nozzle jet injectors (MUNJIs) and disposable-
syringe jet injectors (DSJIs; once called disposable- cartridge  jet 
injectors), with major implications for immunization safety 
(see “Safety of multiuse-nozzle jet injectors” and “Disposable-
syringe jet injectors”, later).  

  Deposition in target tissues 
 In vivo imaging indicates that jet-injected medication tends 
to spread along paths of least resistance in a generally conical 
distribution.  598–604   The depth achieved depends primarily on 
the power imparted to the liquid, and on variables such as ori-
fice diameter, viscosity of the dose, tautness and thickness of 
the skin and fat layer, and angle of injection.  495   ,   496   ,   525   ,   597   ,   599   ,   605   ,   606   
Only the SC compartment is reached by many DSJIs designed 
for self-administration by patients of insulin, hormones, and 
other drugs, as well as some MUNJIs used in dental anesthe-
sia (eg,  Fig. 61-5H ).  607   ,   608   

 Most MUNJIs developed for mass vaccination campaigns are 
powered to reach IM tissues—for example, the Ped-O-Jet  609   (see 
 Figure 61-5C ) and Med-E-Jet  610   (see  Figure 61-5E ), as well as sev-
eral new-generation DSJIs. The Biojector 2000 varies the orifice 
of different cartridges on the same injector to deliver either by 
the IM or the SC route ( Figure 61-6I   ).  83   ,   611   ,   612   The PharmaJet  82   
(not shown) varies spring strength of color-coded injectors for IM 
delivery to different-size patients. For its newer Stratis model, 
SC delivery is by operator technique to pinch up and inject into 
the fat layer (see  Figure 61-6C ). The LectraJet  613   can also vary 
spring strength between models (see  Figure 61-6A,B ). Given 
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Current/last 
manufacturer Device trade name(s) Year(s)  *  

Market/primary 
uses

Energy source/
storage Type Filling

Target 
tissue References  

Activa Brand 
Products  500  

Preci-Jet, †  Preci-Jet 50, †  
AdvantaJet GentleJet, 
Freedom Jet

1984 Hu/In Ma/Sp MUNJI On-F SC  394 ,  575 

American Jet 
Injector  501  

Am-O-Jet 1995 Hu/Va Pe/Sp MUNJI On-I ID, IM  715 

Antares 
Pharma  731  

Medi-Jector † 1972 Hu/Va Ma/Sp MUNJI On-I M, SC  532 ,  569 

Medi-Jectors II, †  III, †  IV † 1980s–90s Hu/In Ma/Sp MUNJI On-F SC  604 

Medi-Jector Choice (MJ 6) † 1997 Hu/In Ma/Sp DSJI On-F SC —

Medi-Jector Vision ‡  (MJ 7, 
ZomaJet, SciTojet, Twin-Jector 
EZ II, Tjet)

1999 Hu/In, Gh Ma/Sp DSJI On-F SC  572 ,  Fig. 61-6D 

Valeo (MJ 8) § 2000s Hu/In, Gh Ma/Sp DSJI Md, Sd SC  495 

Medi-Jector MJ 10 § 1997 Hu Ga/Ga SUDJI Mf SC —

Vibex § 2001 Hu/Va Ma/Sp Mini-needle 
DSJI, SUDJI

Mf, Off ID, SC  495 

Vaccijet électrique, Avijet  Ve/Va Ba/Sp MUNJI On-I, via tube ID, IM, SC —

Vaccijet manuel — Ve/Va Ma/Sp MUNJI On-I ID, IM SC —

Avant Medical  502  Guardian101 § 2002 Hu/Un, Va Ma/Sp DSJI Off SC —

Becton, 
Dickinson  84  

Velodermic † , § 1940s Hu Ga/Ga (N 2 ) DSJI — —  492 ,  542 ,  572 ,  598 

Beijing QS Medical 
Technology Co., 
Ltd.  84a  

QS Jet 2010s Hu/In Ma/Sp DSJI Off, Md SC —

Bio-Curve 
Beauty & Health 
Equipment 
Factory  84b  

BC-M7 SMART JET 2010s Hu/Un Ma/Sp DSJI Off SC —

Bioject  83  Biojector 2000 1993 Hu/Va, Av Ga/Ga (CO 2 ) DSJI Off ID § , IM, SC  34 ,  166 ,  167 ,  231 , 
 414 ,  559 ,  566 ,  567 , 
 581-584 ,  586 ,  611 , 
 612 ,  614 ,  638-640 , 
 642 ,  651 ,  653 ,  658 , 
 677 ,  681-684 ,  696 , 
 Fig. 61-6I 

Vitajet, †  VitajetII † 1984 Hu/In Ma/Sp MUNJI On-F SC —

Vitajet 3 (cool.click, ~  
SeroJet, ~  mhi-500,  ¶   Canine 
Transdermal Device ** )

1996 Hu, Ve/In Gh, Va Ma/Sp DSJI On-F SC  34 ,  597 ,  657 

Iject § 2000s Hu/Un Ga/Ga (N 2 ) SUDJI Mf SC 730,  Fig. 61-6K 

Iject R § 2000s Hu/Un Ga/Ga (N 2 ) DSJI Mf SC  730 

 Table 61-1    Historical, Currently Marketed, and Investigational Jet Injectors Used, Studied, or Considered for Vaccination (see footnotes for explanation of abbreviations)       
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Vitavax § 2004 Hu/Va Ma/Sp DSJI On-F SC —

Vetjet †† — Ve/Va Ma/Sp DSJI On-F SC  503 

Mhi-500  ¶  2000s Hu/In Ma/Sp DSJI On-F SC  510 

Bioject Zetajet (once known as 
Vitavax)

2009 Hu/Va Ma/Sp DSJI On-F ID§, IM, SC  740 ,  Fig. 61-6J 

Bioject ID Pen 2011 Hu/Va Ma/Sp DSJI Off ID Fig. 61-2K

Chemical 
Automatics 
Design Bureau 
(CADB)  504  

BI-1, BI-1M, BI-2, BI-3, BI-3M, 
BIP-4, BI-8, BI-19, ISI-1, SShA

1960s Hu/Va Ma/Sp MUNJI On-I SC, IM  493 ,  547 ,  617 ,  643-
646 ,  668 ,  689 ,  690 , 
 714 ,  729 

Consort Medical 
plc, Bespak 
division  510  

mhi-500 ¶  (InsulinJet ¶ ) 2001 Hu/In Ma/Sp DSJI On-F SC —

SQ-PEN 2002 Hu/In Ma/Sp DSJI On-F SC —

SQ-X 2002 Hu/In Ma/Sp DSJI On-F SC —

MHP-1 2010s Hu/In Ma/Sp DSJI On-F SC —

cool.click II 2010s Hu/Ho Ma/Sp DSJI On-F SC —

Crossject  594  Crossject § 2001 Hu/Un Ch/Ch SUDJI Mf SC, IM, ID —

Zeneo § 2010s Hu/Mu Ch/Ch SUDJI Mf ID, M, SC 84e

D'Antonio 
Consultants, 
International 
(DCI)  613  

LectraJet HS § 1980s Hu/Va Ba/Sp DSJI Off ID, M, SC  34 ,  679 ,  Fig. 61-6A 

LectraVet 1980s Ve/Va, Mu Ba/Sp MUNJI On-I IM, SC —

LectraJet M3 RA 2011 Hu/Va Ma/Sp DSJI Off ID, M, SC  34 ,  654 ,  Fig. 61-6B 

EMS Electro 
Medical 
Systems  505  

Swiss Injector § , EMS/RPM § 1990s Un/Un — MUNJI On-F IM  611 

EMS/MPM § 1990s Un/Un — MUNJI Md IM  611 

EuroJet 
Medical  506  

E-Jet 500 2003 Hu, Ve/Ho, In, 
St, Va

Ma/Sp DSJI Off SC —

E-Jet 50 2003 Hu/Va Ma/Sp DSJI Off SC —

Felton  721  BI-100, §  HSI-500 § 1990s Hu/Va Pe/Sp MUNJI On-I IM, SC  34 ,  722 

Pulse 200, 250 1990s Ve/Mu Ga/Ga MUNJI On-I IM, SC —

H. Galante et 
Compagnie   508   

Device for l'Aquapuncture † 1865 Hu/Mu Ma/Ma MUNJI ON-I —  523 ,  Fig. 61-5A 

Genesis 
Medical  507  

Sensa-Jet † , § 1990s Hu/Va Ma/Sp DSJI Off SC  

Heng Yang 
Weida Science 
Technology  509  

Pro-Jeey 2000 — Hu/Un — — — — —

INJEX – Equidyne 
Systems  732  

INJEX 30 and 50 §  models, 
ZipTip ‡‡ 

2000 Hu/In, Gh Ma/Sp DSJI Off SC  34 ,  576 ,  665 , 
 Fig. 61-6G 

Jet Syringe, §  ROJEX § 2000s Hu/In, Gh Ma/Sp SUDJI Mf or Off SC —

 Table 61-1 Historical, Currently Marketed, and Investigational Jet Injectors Used, Studied, or Considered for Vaccination (see footnotes for explanation of abbreviations)—cont'd 
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Keystone 
Industries  607  ,  609  

Ped-O-Jet † 1950s Hu/Va Pe, El/Sp MUNJI On-I ID, M, SC  1 ,  80 ,  81 ,  172 ,  529 , 
 532-535 ,  538 ,  547-
549 ,  554 ,  556 ,  570 , 
 574 ,  620 ,  621 ,  636 , 
 645 ,  649 ,  657 ,  661 , 
 663 ,  667 ,  672 ,  679 , 
 687 ,  711 ,  712 ,  715 , 
 720 ,  Figs. 61-2E , 
 61-5C 

Syrijet 1960s De, Hu/An, St Ma/Sp MUNJI Md, Sd ID, SC  574 ,  603 ,  607 ,  685 ,  712 

MADA Medical 
Products  608  

MadaJet, MadaJet XL 1980s De, Hu/An, St Ma/Sp MUNJI Md ID, SC  241 ,  557 ,  716 , 
 Fig. 61-5H 

Med-E-Jet D  610  Med-E-Jet Early 
1970s

Hu/Va Ga/Ga (CO 2 , air) MUNJI On-I ID, M, SC  532 ,  560 ,  564 ,  637 ,  705-
708 ,  714 ,  Fig. 61-5E 

Medical 
International 
Technologies  725  

MED-JET 1990s Hu/An, Va Ga/Ga (CO 2 ) MUNJI ON-I IM, SC  726 ,  727 

MED-JET H-III 2010s Hu/Va, St, Mu Ga/Ga MUNJI ON-I IM, SC  726 ,  727 

MED-JET MBX 2010s Hu/Mu, St Ga/Ga MUNJI ON-I ID, M, SC  726 ,  727 ,  Fig. 61-5F 

MED-JET H-IV § 2010s Hu/Va, Mu Ga/Ga DSJI Off ID, M, SC —

Agro-Jet, MIT-II, MIT-IIP, MIT-III, 
MIT-V, MIT-VI, MIT-X, MIT-XIV

1990s, 
2000s

Ve/Va, Mu Ga/Ga (CO 2 ) MUNJI ON-I IM, SC —

Microbiological 
Research 
Establishment  511  

Porton Needleless Injector, †  
Port-O-Jet † 

1962 Hu/Va Pe/Sp MUNJI ON-I ID, SC  602 ,  655 ,  702 

National Medical 
Products  733  

J-Tip 1990s Hu/In Ga/Ga (CO 2 ) SUDJI On-F SC  558 ,  Fig. 61-6F 

Nidec Tosok 
Corporation  512  

Hyjettor † 1970s Hu/Un Pe/Hy MUNJI On-I ID, M, SC —

PATEV GmbH & 
Co KG

Pyrofast § 2009 Hu/Un Ch/Ch SUDJI Off ID, M, SC  595 

PATH  106  MEDIVAX †  ,  § 1990s Hu/Va Pe/Ga (air) DSJI On-I SC, IM  715 

PenJet 
Corporation  513  

PenJet § 1990s Hu/Va Ga/Ga (N 2 ) SUDJI Mf SC —

PharmaJet, Inc.  82  PharmaJet 2000s Hu, Ve/Va Ma/Sp DSJI Off ID, M, SC  641 ,  738 ,  739 

Stratis 2011 Hu Ma/Sp DSJI Off IM, SC 641,  Fig. 61-6C 

Tropis 2011 Hu/Va Ma/Sp DSJI Off ID  169 ,  579 ,  580 ,  641 , 
 Fig. 61-2J 

Prolitec SA  514  IsaJet, †  Isa40 Isa10 1990s Hu, Ve/Un Ma/Sp MUNJI On-I IDm —

Mesoflash M10 † 1980s Ve/Un Ma/Sp MUNJI On-I IDm —

Mesoflash M30 †  and M40 † 1980s Hu/Un Ma/Sp MUNJI On-I IDm —

Sanofi Pasteur  736   
(manufactured 
under former 
Institut Mérieux 
and Pasteur 
Mérieux Sérums & 
Vaccins entities)

Im-O-Jet † 1980s Hu/Va Pe/Sp MUNJI On-I SC  194 ,  671 ,  674 ,  737 , 
 Fig. 61-5G 

Mini-Imojet, † , §  PM 3C † , § 1980s Hu/Va Ma/Sp DSJI Mf SC  34 ,  134 ,  648 ,  650 , 
 660 ,  737 ,  Fig. 61-6H 
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Robert P. Scherer 
Co.  527  

Hypospray † 1940s Hu/In Ma/Sp DSJI Off ID, SC  492 ,  525 ,  526 ,  562 , 
 563 ,  568 ,  574 ,  577 , 
 599 ,  605 ,  Fig. 61-5B 

Hypospray Professional † 1950s Hu/Va Ma/Sp MUNJI On-I ID, M, SC  220 ,  624 ,  Fig. 61-5I 

Hypospray Multidose Jet 
Injector, †  K, †  K-2, †  K-3 †  models

1952 Hu/Va El/Sp MUNJI On-I ID, M, SC  130 ,  140 ,  542 ,  550 , 
 551 ,  601 ,  624 ,  628 , 
 688 ,  691 ,  699 , 
 Fig. 61-5D 

Schuco 
International  515  

Panjet multiple models, †  
Intrajet, †  SchucoJet † 

1960s Hu/Va Ma/Sp MUNJI On-F, Md ID, SC  194 ,  208 ,  622 ,  623 

Shimadzu 
Corporation  516  

ShimaJET — Hu/In, Va Ma/Sp DSJI On-F SC  585 ,  680 ,  686 

SIC M  517  JET2000 — Hu/Va Ma/Sp MUNJI On-I —  715 

DG-77 — Hu/Va Ma/Sp MUNJI On-I —  573 

Sino Goldbuilder 
Med Tech (Beijing) 
Co., Ltd.  84c  

Goldbuilder Ruisu GB-03 2010s Hu/In Ma/Sp DSJI Off SC —

Société AKRA 
DermoJet  518  

DermoJet Standard, Dermojet 
type HR, Dermojet model G

1960s Hu/Va Ma/Sp MUNJI On-I, Md ID, IDm, 
SC

 74 ,  217 ,  218 ,  226 , 
 207 ,  209 ,  211-213 , 
 553 ,  571 ,  574 ,  632 , 
 661 

Dermojet Automatic, Vacci-Jet — Hu/Un Ma/Sp MUNJI On-I SC —

Team Consulting  84d  Chemomotor  § 2000s Hu/Va Ch/Ch(butane) DSJI Off ID, SC, IM —

Valeritas  302  Mini-Ject § 2000s Hu/Mu Va Ch/Ch SUDJI Mf ID, M, SC  678 

Z & W 
Manufacturing  519  

Press-O-Jet † 1950s Hu/Va Ma/Sp MUNJI On-F SC/IM  528 ,  542 ,  546 ,  574 , 
 659 ,  666 

Zogenix  734  IntraJect § 1990s Hu/Ho Ga/Ga (N 2 ) SUDJI Mf SC  593 ,  Fig. 61-6E 

Sumavel DosePro §§ 2010 Hu Ga/Ga (N 2 ) SUDJI Mf SC  735 

   *  Approximate year(s) first introduced to market; or if not, year(s) investigational development initiated; or if not, year patent filed.  
  †  Device withdrawn from market, no longer manufactured, or abandoned in development.  
  ‡  Vision injector versions are licensed to Ferring Pharmaceuticals BV (ZomaJet), SciGen Ltd (SciTojet), JCR Pharmaceuticals (Twin-Jector EZ II), and Teva (Tjet for TEV-TROPIN human growth hormone).  
  §  Investigational device, or not yet sold commercially for routine use in humans or animals.  
  ~  The cool.click and SeroJet devices are the Vitajet 3 design licensed by Bioject to EMD Serono520 for delivery of the Saizen and Serostim brands of somatropin (recombinant human growth hormone) for treatment of growth hormone 

deficiency and AIDS-wasting diseases, respectively.  
  ¶   The mhi-500 (by The Medical House, acquired by Bespak510) device contains Vitajet 3 technology licensed by Bioject.  
  **  Canine Transdermal Device is an adaptation of the Bioject Vitajet3 jet injector licensed to Merial (Sanofi group) for delivery of its Oncept DNA vaccine for treatment of oral melanoma in dogs, licensed in the United States in 2010.  
  ††  The Vetjet (by Merial521) device is the Vitajet 3 design licensed by Bioject to Merial for delivery to cats of PureVax brand of feline leukemia virus vaccine  
  ‡‡  The ZipTip (by Pfizer) is the INJEX design licensed to Pfizer for delivery of Genotropin recombinant human growth hormone.  
  §§  Zogenix SUMAVEL DosePro delivers sumatriptan indicated for acute migraine and cluster headache. Novel borosilicate glass dose chamber prefilled by drug manufacturer.  

  Market/primary uses:  An, anesthetic; Av, antiviral; De, dentistry; Gh, growth hormone; Ho, hormone; Hu, human medicine; In, insulin; Mu, multiple; St, steroids; Un, unspecified; Va, vaccine; Ve, veterinary. 
  Energy source/storage:  Ba, battery; Ch, chemical (via expanding gases of reaction or combustion); El, wall (mains) electricity; Ga, compressed gas (cylinder or electrical compressor); Hy, hydraulic fluid pressurized in foot-pump 

accumulator; Ma, manual muscle; Pe, pedal muscle; Sp, metal spring. 
  Type:  DSJI, disposable-syringe jet injector; MUNJI, multiuse-nozzle jet injector; SUDJI, single-use disposable jet injector (entire unit discarded after use). 
  Filling:  Md, multiple doses possible from dose chamber before refilling required; Mf, manufacturer prefilled only; Off, off tool (dose chamber [syringe] is filled from vial before insertion into injector); On-F, on tool (primary container 

[vial] attaches temporarily to injector to fill dose chamber during filling but is removed before injection); On-I, on tool (primary container [vial] remains attached to injector to fill dose chambers repeatedly but stays attached during 
injections); Sd, dose chamber is a prefilled, standard drug cartridge (primary container). 

  Target tissue:  ID, intradermal; IDm, intradermal with multiple orifices for simultaneous injection; IM, intramuscular; SC, subcutaneous. 

 Table 61-1 Historical, Currently Marketed, and Investigational Jet Injectors Used, Studied, or Considered for Vaccination (see footnotes for explanation of abbreviations)—cont'd 
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great patient variation, it is no surprise that imaging data sug-
gest that JIs often miss the intended IM or SC compartment.  614   
However, this may have little clinical relevance and may be no 
different from needle injections, for which fat-pad thickness is 
often underestimated when selecting needle length, or when the 
needle is not fully inserted.  615   ,   616   In Russia, an unconventional 
target tissue—the lung—was reached by “intrapulmonary” jet 
injections (between the ribs) of antibiotics, bronchodilators, and 
steroids.  617    

  Cutaneous delivery 
 As mentioned (see “Cutaneous vaccination”, earlier), there has 
been a resurgence of interest in skin vaccination because of 
its potential dosage-sparing capability and minimal invasive-
ness. Jet injectors for classic ID delivery offer the additional 

 advantage of simplicity over the tedious and difficult classic 
Mantoux injection, as well as the ability to use existing off-the-
shelf vaccines without reformulation. Older MUNJI models, 
such as the Ped-O-Jet, used specialized nozzles with recessed 
orifices offset by 45 degrees from perpendicular to the skin, cre-
ating an air gap that weakened its jet stream so as to leave the 
dose in the skin (see  Figure 61-2E ). 

 The Ped-O-Jet (and to a much lesser extent other MUNJIs 
[see  Figure 61-5D ]) administered tens of millions of smallpox 
vaccine doses for the first half of the WHO Smallpox Eradication 
Programme in South America and West Africa in the late 1960s 
to early 1970s, until invention of the simpler and swifter bifur-
cated needle.  1   ,   81   ,   538   JIs also delivered yellow fever  172   ,   173   ,   534   ,   548   and 
BCG vaccines  618–623   by the ID route, as well as various tubercu-
losis skin testing (TST) antigens.  624–632   However, variations in 
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 Figure 61-5    Selected Multiuse Nozzle Jet Injectors (MUNJIs).    (A)  Aqua-puncture device of Galante et Compagnie,  523   circa 1866, of historical 
interest as first known jet injector. (From Béclard F. Présentation de l'injecteur de Galante, Séance du 18 Décembre, 1866, Prés. Bouchardat. Bulletin 
de l'Académie Impériale de Médecine (France) 32:321-327, 1866.)    (B)  Hypospray  527   manual MUNJI (Robert P. Scherer Company) for individual 
patient or caregiver administration; the first modern-era, commercial jet injector, introduced in the 1940s, with reusable, resterilizable MetaPule 
dose-chamber cartridges. (From Perkin FS, Todd GM, Brown TM, et al. Jet injection of insulin in treatment of diabetes mellitus. Proc Am Diabetes 
Assoc 10:185-199, 1950.)    (C)  Ped-O-Jet  609   (Keystone Industries), the most widely used MUNJI worldwide, before withdrawal from public health 
use by the 1990s for cross-contamination risk. Its metal spring is compressed by hydraulic fluid pumped by  (C, inset)  a foot pedal in its carrying 
case, or by electric pump (not shown). Depth of delivery determined by removable nozzle used, either a subcutaneous/intramuscular (SC/IM) nozzle 
(shown here) or an intradermal (ID) nozzle (see Figure 61-2E).    (D)  Hypospray  527   motorized high-speed MUNJI (Robert P. Scherer Company), once 
used for mass campaigns. Power to cock its metal spring was supplied by the hydraulic tubes from the electrical pump in its carrying case (shown 
in background).    (E)  Med-E-Jet  610   MUNJI, powered by metal springs compressed either by a CO 2  gas cartridge in the handle, capable of about 
a dozen injections, or by pneumatic hose connection to a separate tank or electric compressor pump. Capable of intradermal injections using a 
nozzle spacer. A device of this type was confirmed to be responsible for a hepatitis B outbreak in a California clinic.  707-709   Not known to be in current 
use in the United States.    (F)  Med-Jet MBX MUNJI (Medical International Technology  725  ), made in Canada and licensed in 2011 in China  726   and 
Russia  727   for use in humans.    (G)  ImoJet spring-powered MUNJI (Courtesy of Sanofi Pasteur.  736  ) with remote power source (not shown), once used in 
mass campaigns.    (H)  MadaJet (Mada International  608  ), a MUNJI still used for injections in dentistry, podiatry, and perhaps other medical specialties 
(no known use for vaccination). The teflon sheath over the nozzle is designed to deliver the anesthetic in a spray pattern that penetrates 2-3 mm 
below the epithelium, producing a wheal that is 3-5 mm in diameter.    (I)  Hypospray  527   professional model MUNJI (Robert P. Scherer Company) uses 
manual hand crank to cock metal spring. Once used in routine immunization in medical clinics, and in mass campaigns.    (Figure 61-5A,  523  ; 61-5B,  526  ; 
61-5C, C inset, E, courtesy of James Gathany, Greg Knobloch [CDC Photographic Services]; 61-5D, courtesy of Public Health Image Library, CDC; 5F, courtesy of 
Medical International Technology;  725   61-5G, courtesy of Sanofi Pasteur;  736   61-5H, courtesy of Mada International  608   [Robert Sorbello]; 61-5I, courtesy of Catalent Pharma 
Solutions, Somerset NJ.  527  )   
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consequent TST reaction sizes  74   ,   633   led WHO to discourage JI 
use for BCG and TST.  634   ,   635   

 For devices without a specialized ID nozzle, some vaccina-
tors attach spacers or tubing to a regular nozzle, creating a gap 
between orifice and skin, which weakens the jet and provides 
space for a bleb that leaves the dose in the skin.  22   ,   222   ,   534   ,   535   ,   629   ,   636   

This ID technique was pursued investigationally for local anes-
thesia  637   and DNA vaccines.  638–640   

 As described earlier (see “Poliomyelitis”), WHO and oth-
ers involved in polio eradication are pursuing the use of DSJIs 
for needle-free, dosage-sparing ID delivery of IPV once OPV is 
discontinued for both technical reasons and cost (full-dosage 
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 Figure 61-6    Selected Disposable-Syringe Jet Injectors (DSJIs), Licensed or Investigational (as noted).    (A)  Investigational LectraJet HS 
(high-speed) motorized DSJI (D'Antonio Consultants International  613  ) features built-in motor and rechargeable battery for rapidly compressing metal 
spring between injections at rates exceeding 600 per hour, with battery capacity of  >  3,000 injections per charge. Capable of rapid, fingers-free 
loading and unloading of single-use syringes from  (A, inset)  a sterile-packaged, 30-unit magazine for mass vaccination. Magazine may also be 
mounted on nondominant forearm for vaccinator mobility. Capable of backup manual spring-cocking if batteries are depleted.    (B)  LectraJet M3 
(manual) model DSJI,  613   sharing the same common syringe as the adjacent HS model for rapid, fingers-free loading and unloading of syringes. 
IM or SC delivery set by varying syringe orifice diameter. Cocked using off-tool carrying case (not shown). Cleared for US marketing by FDA in 
2009. Syringes and needle-free vial adaptors also supplied in individually wrapped sterile envelopes for routine immunization (not shown).  
  (C)  PharmaJet Stratis  82   DSJI, for 0.5-mL dose delivery. Delivery IM or SC set by vaccinator technique (fat layer pinched up for SC). Cocked using 
off-tool carrying case (not shown).  (C, inset)  Syringe is filled by pulling back and breaking off its blue shaft and thumb tab from conventional 
single-dose and multidose vials using needle-free vial adaptor (not shown). On insertion into device, any excess liquid is returned to vial to minimize 
wastage of overfill. Cleared for US marketing by the FDA in 2011. See Figure 61-2J for intradermal DSJI from same device manufacturer.    (D)  Medi-
Jector Vision DSJI,  731   used primarily for self-administration by patients of insulin and other medications.    (E)  Sumavel DosePro single-use DSJI 
(Zogenix  734  ), licensed as drug-device combination product for subcutaneous delivery of prefilled sumatriptan for treatment of migraine and cluster 
headaches.  735   Uses novel, borosilicate-glass dose chamber prefilled by drug manufacturer.    (F)  J-Tip, single-use DSJI,  733   powered by compressed 
nitrogen gas.    (G)  Injex DSJI,  732   metal spring compressed by separate cocking device.    (H)  Imule manufacturer-prefilled DSJI syringe  660   ,   737   for 
Vaxigrip influenza vaccine (Institut Mérieux/Pasteur Mérieux Sérums & Vaccins  736  ). The syringe served as both primary vaccine packaging in a 
presentation smaller than conventional single-dose glass vial (millimeter scale on left), as well as the single-use disposable syringe for jet injection. 
Upon removing the label  (H, center) , inserting into the Mini-Imojet DSJI (not shown), and removing the rubber cap  (H, right) , the dose was ready 
for injection. Studied in human trials for five vaccines  134   ,   648   ,   650   and found successful in immune responses and safety. Subsequently abandoned by 
the manufacturer.    (I)  Biojector 2000 DSJI (Bioject Medical Technologies  83  ), capable of subcutaneous and intramuscular injections using syringes 
of differing orifice diameters.  614   Cleared for US marketing by FDA in 1990s. Powered by compressed CO 2  cartridge, or by connection to separate 
compressed gas source. An investigational spacer for intradermal delivery (illustrated elsewhere  22  ) creates a 2-cm air gap to weaken the jet 
stream, leaving the injectate in the skin. Used by US Navy and Coast Guard for approximately one-third million vaccinations per year of sailors and 
dependents from 1997 through 2011.    (J)  ZetaJet metal-spring-powered DSJI,  83   features built-in crank for manual re-cocking of metal spring (Bioject 
Medical Technologies  83  ). Uses different auto-disabling cartridges for SC, IM, and ID injections (licensed by US FDA in 2009). See Figure 61-2K for 
intradermal DSJI from same device manufacturer.    (K)  Investigational Iject DSJI,  83   ,   730   designed for either single-use or reuse upon refitting with its 
manufacturer-prefilled borosilicate glass dose chamber.    (Figure 61-6A, A inset, B, courtesy of D'Antonio Consultants International, Inc.  613  ; 6C, C inset, courtesy of 
PharmaJet, Inc.  82  ; 6D, courtesy of Antares Pharma  731  ; 6E, courtesy of Zogenix  734  ; 6F, courtesy of National Medical Products  733  ; 6G, courtesy of INJEX-Equidyne Systems  732  ; 
6H, courtesy of Bruce G. Weniger; 6I, courtesy of James Gathany (CDC Photographic Services); 6J, K, courtesy of Bioject Medical Technologies.  83  )   
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IPV is 20 times more costly than OPV).  166–169   ,   641   Other vac-
cines that have been studied for ID delivery by DSJIs include 
HIV/AIDS  584   ,   639   and influenza,  642   and studies are underway or 
planned for dengue,  230   ,   579   ,   580   human papillomavirus, and rabies. 
The PharmaJet Tropis (see  Figure 61-2J ) and the Bioject ID Pen 
(see  Figure 61-2K ) are two new spring-powered DSJIs designed 
solely for ID delivery of 0.05 and 0.1 mL volumes. The former 
was licensed in the United States in 2011, and clearance for the 
latter is expected in 2012.  

  Immune response 
 A large body of clinical literature shows the immunogenicity 
of JIs to be usually equal to, and sometimes better than, that 
induced by conventional needle and syringe for a wide variety of 
vaccines.  493   ,   494   ,   496   Among inactivated and toxoid vaccines, this 
includes anthrax,  643–646   cholera,  647   whole-cell diphtheria-tetanus-
pertussis,  207   ,   208   ,   538   ,   648   diphtheria-tetanus,  211   hepatitis A,  648–651   
hepatitis B,  194   ,   652   ,   653   influenza,  130   ,   134   ,   140   ,   546   ,   648   ,   654–658   plague,  643   ,   644   
polio,  659   tetanus,  554   ,   648   ,   660   ,   661   and typhoid.  648   ,   662    With the excep-
tion of the variable delayed-hypersensitivity responses to BCG 
discussed earlier, other live vaccines inducing suitable immune 
responses when administered by JI into their usual tissue compart-
ment are measles,  218   ,   220   ,   226   ,   534   ,   538–540   ,   548   ,   636   ,   663   ,   664   measles-mumps-
rubella,  665   measles-smallpox,  534   ,   535   ,   548    measles-smallpox–yellow 
fever,  534   ,   548   smallpox,  1   ,   80   ,   81   ,   534   ,   538   ,   636   ,   663   ,   666–668   BCG–yellow fever,  172   
and yellow fever.  171–173   ,   534   ,   538   ,   549   

 The immunogenicity or efficacy of traditional meningococ-
cal polysaccharide vaccines administered by JIs have been dem-
onstrated for serogroup A in the clinic  202   ,   669   and in outbreaks 
in the meningitis belt of western sub-Saharan Africa,  543   ,   670–674   
as well as for serogroup C in South America  675–677   and 
Africa.  543   ,   674   Jet injection of the newer  Vi  capsular polysaccha-
ride typhoid vaccine resulted in 87% seroconversion, versus 
69% by needle-syringe ( P   <  .05).  648   Clinical studies have not 
yet been published of JI for modern protein-conjugated poly-
saccharide vaccines for  H. influenzae  type b, pneumococcus, 
or meningococcus. 

 A wide variety of investigational recombinant nucleic acid 
vaccines are being delivered in preclinical and clinical trials 
using various JIs.  638   ,   640   ,   678–686    

  Reactogenicity 
 When JIs and needles used to deliver IM and SC injec-
tions are compared in terms of immediate pain, the results 
depend on the medication involved. Insulin, other nonirritat-
ing drugs, and nonadjuvanted vaccines are usually reported 
to result in either reduced or equivalent pain compared with 
needles,  525   ,   534   ,   546   ,   559   ,   576   ,   577   ,   605   ,   665   but not always.  658   True double-
blinded, needle-controlled studies for such subjective criteria 
are difficult to implement and are thus rare. In an exception,  654   
one group applied earphones to all volunteers and played music 
loud enough to mask the mechanical noise for the half receiving 
the DSJI injection. All volunteers inserted their arms through 
a screen to block their view, and the injection of those random-
ized to the needle-syringe group occurred through the center of 
a plastic ring the same size as the jet injector nozzle, so that 
both groups experienced the same skin-contact sensation just 
prior to injection by a nurse not involved in study assessment. 
Mild or moderate erythema was measured in 97% of DSJI vac-
cinees, but only 73% of the N-S group ( P  = .03). Mild or mod-
erate induration occurred in 93% and 27% of DSJI and N-S 
groups, respectively ( P   <  .0001). 

 Vaccines with alum adjuvants or other irritating compo-
nents tend to result in higher frequencies of delayed local reac-
tions (eg, soreness, edema, erythema) when jet-injected, probably 
because small amounts remain in the track left through skin 
and superficial tissue. These include vaccines for diphtheria-
tetanus- pertussis (whole cell),  208   ,   538   ,   551   ,   658   hepatitis A,  648   ,   649   ,   651   ,   687   
hepatitis B,  194   ,   652   ,   653   tetanus,  552   ,   554   ,   648   ,   660   ,   661   ,   688   tetanus- diphtheria,  211   

 tetanus-diphtheria-polio,  551   and typhoid.  648   ,   662   ,   689   ,   690   In most 
cases, local reactions were mild, resolved within days, and were 
not reported to compromise clinical tolerance and safety. A 
chronic granuloma was reported after JI vaccination with tetanus 
toxoid adsorbed to alum,  691   and pigmented macules persisted in 
a few hepatitis B vaccinees.  652   

  Other adverse events 
 Bleeding and, less often, ecchymosis are reported to occur 
at the jet injection site more frequently than with needle 
 injections.  134   ,   525   ,   528   ,   530   ,   531   ,   542   ,   546   ,   559   ,   564   ,   572   ,   575   ,   577   ,   605   ,   633   ,   648   ,   659   ,   692–694   
Rarely, the jet stream may cause a laceration if the health 
care worker has not properly immobilized the limb and injec-
tor in relation to each other during injection.  525   ,   530   ,   546   ,   577   ,   648   Rare 
case reports of other adverse events include transient neurop-
athy,  695   ,   696   hematoma,  569   ,   697   and eye penetration when used to 
deliver anesthetic for lower eyelid surgery.  698     

   Safety of multiuse-nozzle jet injectors (MUNJIs) 

 Beginning in the 1960s, concerns arose for potential iatrogenic 
transmission of bloodborne pathogens by MUNJIs, which use 
the same nozzle to inject consecutive patients without interven-
ing sterilization.  688   ,   693   ,   694   ,   699   Unpublished bench and chimpanzee 
studies indicated hepatitis B contamination could occur because 
blood or HBsAg remained in nozzle orifices despite recom-
mended alcohol swabbing between injections.  700   ,   701   Others, how-
ever, reported negative results in bench or animal testing when 
they tried to detect contamination,  529   ,   564   ,   702   ,   703   or they pointed to 
the lack of epidemiologic evidence of a problem.  551   ,   702   ,   704   ,   705   Then 
in 1985, Brink and colleagues described a careful animal model 
in which a Med-E-Jet transmitted    lactate dehydrogenase elevat-
ing virus (LDV) between mice in 16 (33%) of 49 animals.  706   

 A few months later, fact superseded theory when a Med-E-Jet 
caused an outbreak of several dozen cases of hepatitis B among 
patients in a California clinic.  707–709   Subsequent clinical,  710   
field,  711   ,   712   bench,  713   animal,  714   ,   715   and epidemiologic,  716   ,   717   stud-
ies added more evidence that MUNJIs could transmit pathogens 
between patients. This led to warnings and discontinuation of 
their use by public health authorities,  718   ,   719   and to market with-
drawal of the Ped-O-Jet and discontinuation of its US military 
use in 1997.  497   ,   720   

 In the mid 2000s, a MUNJI was reengineered with dis-
posable caps to try to prevent contaminating blood or tissue 
fluid from splashing back onto the reusable nozzle, potentially 
to infect the next patient.  721   The cap contained three plastic 
washers with axially aligned central holes of about 1 mm in 
diameter for the jet stream to pass in one direction along the 
centimeter-wide gap between orifice and skin. However, after 
injections with saline of volunteers in China who carried hepa-
titis B virus, 8% of subsequent ejectates into vials—representing 
the next vaccinees in a clinic or mass campaign—were found 
by polymerase chain reaction assay to contain hepatitis B anti-
gen.  722   High-speed microcinematography also revealed exten-
sive splashback from the skin during injection with MUNJIs.  496   

 This body of evidence supports the conclusion that the 
design of MUNJIs is inherently unsafe, and any reuse of fluid 
pathways or unsterile components that are in direct or indi-
rect contact with consecutive patients should be abandoned. 
Even if contamination could be shown to be extremely rare, it is 
unlikely that policymakers could be convinced to set any level 
of acceptable risk. 

 Despite the recommendations against MUNJI use for vac-
cination by public health authorities,  723   ,   724   and their with-
drawal by the US military,  720   models such as the MadaJet  608   (see 
 Figure 61-5H ) and SyriJet  607   continue to be used in the United 
States in dentistry and podiatry and perhaps other specialties. 
Also, despite the Chinese venue for the definitive study doc-
umenting MUNJI cross-contamination,  722   the Chinese Food 
and Drug Administration was reported in February of 2011 to 
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have licensed the Med-Jet  725   line of MUNJIs in that country 
for human applications,  726   as did Russian regulators in April, 
2011,  727   for vaccination, physiatrics, dermatology, and meso-
therapy indications. 

 MUNJIs allowed a single health worker to vaccinate 600 or 
more patients per hour.  494   ,   530   ,   532   ,   546   The withdrawal of the device 
posed challenges for conducting mass immunization campaigns 
for disease control programs and in response to pandemic or 
bioterrorism threat. Indeed, while the Soviet biological war-
fare effort was underway in secret,  728   numerous clinical trials 
were published of high-speed Russian MUNJIs capable of rap-
idly protecting soldiers or civilians against potential biowar-
fare agents such as anthrax, botulism, plague, smallpox, and 
tularemia.  493   ,   643–646   ,   668   ,   689   ,   690   ,   729    

  Disposable-syringe jet injectors (DSJIs) 

 To overcome concerns over MUNJIs and their withdrawal, a 
new generation of safer, disposable-syringe JIs have appeared 
since the early 1990s (see  Table 61-1  and  Figure 61-6 ).  22   ,   494–499   ,   730   
Each sterile syringe (cartridge) has its own orifice and nozzle 
and is discarded between patients. Although many are used 
for self-administration of insulin,  731–733   other hormones, and 
drugs  734   ,   735   (eg, see  Figure 61-6D,E,F,G ), a few are targeted for 
vaccine administration (see  Figure 61-6A,B,C,I,J ). Newer sys-
tems feature, for example, auto-disabling designs to prevent 
refilling and reuse on consecutive patients, in contemplation of 
developing-world markets. 

 One unique and revolutionary system, developed by Charles 
Mérieux and colleagues at Institut Mérieux and Pasteur Mérieux 
Sérums et Vaccins, predecessor companies of Sanofi Pasteur,  736   
was the manufacturer-prefilled Imule syringe (see  Figure 61-6H ) 
for use in the Mini-Imojet DSJI (not shown). The Imule served 
as both the primary container for shipment from the vaccine 
manufacturer and for cold-chain storage, as well as the syringe 
(with rubber-stoppered bottom) for DSJI delivery, obviating the 
need for end-users to purchase any disposables.  34   ,   660   ,   737   Although 
demonstrated in the clinic and field to be immunogenic and safe 
for diphtheria-tetanus-pertussis (whole cell),  648   hepatitis A,  648   ,   650   
influenza,  134   ,   648   tetanus,  648   ,   660   and typhoid vaccines,  648   the system 
was eventually abandoned upon corporate merger. 

 The pioneering DSJI for the vaccine market was the 
Biojector 2000 (see  Figure 61-6I ), introduced in the United 
States in the 1990s.  34   ,   83   ,   166   ,   167   ,   231   ,   414   ,   559   ,   566   ,   567   ,   581–584   ,   586   ,   611   ,   612   ,   614   ,   638–641   , 
  651   ,   653   ,   658   ,   678   ,   681–684   ,   696   Through the 2000s, it was delivering 
approximately 1 million IM and SC vaccine doses per year at 
private, public, and US Navy and Coast Guard immunization 
clinics in the United States, and it was used in many stud-
ies of investigational vaccines (see  Table 61-1 ). Another US 
company, PharmaJet, entered the market in 2009 with licen-
sure of its eponymous device for IM and SC injections, sub-
sequently upgraded as the Stratis (see  Figure 61-6C ). Various 
models have been studied for investigational veterinary  738   ,   739   
and human  169   ,   579   ,   580   ,   641   applications. By the 2011–12 influenza 
season, it had shipped several hundred thousand syringes to 
public health agencies and supermarket and drug chains, until 
the market collapsed on October 26, 2011, with a surprise FDA 
announcement affecting all DSJI companies (see “Regulatory 
matters”, later). 

 Since the 1990s, to meet developing world needs for needle-
free vaccination systems that are economical, auto- disabling to 
prevent reuse, and suitable for both mass campaigns and routine 
immunization, the US Government (through both the CDC and 
the US Agency for International Development), the nonprofit 
organization PATH,  106   and WHO have promoted the research 
and development (R&D) and utilization of DSJI technologies. 
Between 1995 and 2010, the CDC awarded Small Business 
Innovation Research contracts totaling approximately $10 mil-
lion to three competing companies. 

 One project helped develop the high-speed LectraJet (see 
 Figure 61-6A ), with its unique system for fingers-free loading 
and unloading of cartridges that permits vaccinating at least 
600 persons per hour for mass campaigns,  34   ,   613   as well as a 
manual model sharing the same syringes for routine immu-
nization that was found safe and immunogenic for influenza 
 vaccination and was licensed in the United States in 2009 (see 
 Figure 61-6B ).  654   Another set of contracts assisted in adapt-
ing PharmaJet technology for ID delivery, which was licensed 
in 2011 (see  Figure 61-2J ).  82   A third set of Small Business 
Innovation Research contracts supported R&D of the ZetaJet 
(see  Figure 61-6J ), which was licensed in 2009 and once called 
the Vitavax.  740   Its built-in hand-crank to wind its spring was a 
feature targeted for developing-country value.  83   

 PATH  106   has also been a major player in this field, conduct-
ing its own R&D as well as assisting the companies developing 
the DSJIs mentioned here.  170   ,   741   In 2008, the Bill and Melinda 
Gates Foundation awarded PATH $9.8 million to enhance its 
close collaboration with industry to determine the value, appro-
priateness, extent of application, and regulatory pathways for 
DSJIs to deliver vaccines in developing-country immuniza-
tion programs.  742   The PATH initiative for DSJIs has included 
sponsoring and coordinating key policy analyses on ID delivery 
(including by non-DSJI means), economic modeling, and clini-
cal trials on multiple continents.  23   ,   24   ,   165   ,   590    

  Regulatory matters 

 In 2009, to prompt public comment before formal promulga-
tion, the FDA published a draft guidance document on pen, jet, 
and related injectors intended for use with drugs and biologi-
cal products.  743   ,   744   No similar prior effort to clarify the regula-
tory landscape for these devices had ever been published. Many 
existing devices, including all the MUNJIs, either had been 
grandfathered onto the market by virtue of preceding the 1976 
cutoff date for medical device regulation, or were cleared for sale 
on the basis of “substantial equivalence” to such injectors (or to 
other “predicates” that had themselves been linked back to ear-
lier devices). The draft document covered design and construc-
tion features, bench testing aspects, sterility and labeling issues, 
and most importantly, clinical testing. 

 Among the many docket submissions commenting on the 
draft,  745   the most common observation was that the proposed 
guidance document did not distinguish sufficiently between the 
broad types of devices it covered—including DSJIs, MUNJIs, and 
pen (needle) injectors—and that their differences deserved dis-
tinctions in how they should be regulated in accordance with 
the “least burdensome” principle. For example, the same level 
of stringency for demonstrating the safety of MUNJIs because 
of their cross-contamination risk (as summarized in “Safety of 
multiuse-nozzle jet injectors”, earlier) was to apply also to DSJIs. 

 Another major critique of the draft guidance was its proposal 
that before licensure, device manufacturers should identify “the 
drugs/biologic products that are currently approved and mar-
keted for the dosage, rate, and route of administration proposed 
for the general use injector”. As pointed out in PATH's com-
prehensive docket submission,  746   this might necessarily require 
them to conduct clinical trials for every drug or vaccine that 
a physician may decide to administer. It would thus pose a 
major obstacle for innovation and development of “general use” 
devices that are sold empty, that are not labeled or promoted 
for use with any particular drug, and that rely on the clinical 
judgment of the physician in practicing medicine in accordance 
with evidence in the scientific literature and any standards of 
care (as is the case for needles and syringes). This would apply 
even for off-label uses not specifically approved by the FDA for 
the drug involved, as the FDA itself has elegantly stated.  747   As of 
June 2012, no formal promulgation of the guidance document 
has occurred. 
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 On October 21, 2011, at the peak of the US influenza 
vaccination season, the FDA issued an unusual and surpris-
ing warning to physicians, without the usual advance notice 
and consultation with affected parties and agencies. It advised 
against the use of jet injectors to deliver influenza vaccines 
because there were “no data” substantiating such use.  748   
The effect was dramatic. Drugstore and grocery chains imme-
diately cancelled orders for what was expected to be several 
million syringes and thousands of accompanying devices, put-
ting at risk the survival of the small companies involved. 

 Within days, the FDA replaced the categorical statement on 
its website with a more nuanced one pointing out that it had 
not been provided any data from the manufacturers of the six 
then-current US-marketed influenza vaccines for delivery by 
JIs. It also cited “limited data”  654   ,   658   from two JI studies (both 
conducted with CDC involvement) demonstrating similar 
immune responses to influenza vaccines administered by jet 
injectors and by needles, and therefore that “FDA and CDC 
believe that people who got their influenza vaccine via jet injec-
tor do not need to be re-vaccinated”.  749   

 The CDC's Advisory Committee on Immunization Practices 
has for many years recognized jet injection as an effective 
method of vaccination,  723   ,   750   ,   751   based on the substantial lit-
erature and experience reviewed in this chapter. It remains 
unknown whether such a standard of care for accepted pub-
lic health and medical practice  747   can restore a market for such 
off-label use, or whether vaccine manufacturers will undertake 
new studies and petition the FDA to add jet injection to their 
product labels. Thus, the future remains uncertain for the small 
businesses that constitute the global industry for the manufac-
ture of safe, modern jet injector systems for vaccination.   

  Respiratory vaccination 

 Since the very early history of immunization, the respiratory 
tract has been a promising route for vaccine delivery.  1   However, 
only in 2004 did respiratory vaccines first become a part of rou-
tine modern immunization practice, with the licensure of an 
intranasal (IN), live attenuated influenza vaccine (FluMist) in 
the United States (see     Chapter 18 ). The major potential advan-
tages of respiratory immunization are that it avoids the risks 
and concerns associated with parenteral injection, and it gen-
erally provides stronger mucosal immunity than vaccination 
by that route. However, multiple obstacles (see “Challenges for 
respiratory delivery of vaccines”, later) have restricted wider 
application. As of 2011, FluMist was the only respiratory vac-
cine in general use. In contrast, the respiratory route is used 
to deliver a wide and expanding variety of pharmaceutical 
products.  752   ,   753   

 The importance of mucosal immunity is that it prevents 
infection at the portals of entry for the great majority of human 
pathogens—the respiratory, gastrointestinal, and genitourinary 
tracts. In contrast, systemic immunity clears infection only 
 after  successful invasion, by limiting replication and destroying 
the pathogens. Ideally, both mucosal and systemic immunity 
should be raised against targeted pathogens. Strong mucosal 
immunity may enhance the benefits of immunization for some 
diseases. For example, by preventing the initial infection, muco-
sal immunity can reduce the risk of transmission to others, in 
addition to preventing clinical disease. Prevention of infection 
at the mucosal surface may be especially important for diseases 
for which effective systemic immunity has been difficult to 
achieve, such as tuberculosis and AIDS. 

 Every mucosal surface available for administering vaccines 
has been studied with a variety of antigens in animal models, 
including oral, respiratory, rectal, vaginal, and ocular tissues. 
Several human vaccines are already licensed and in success-
ful use for delivery by oral ingestion, including those for polio, 

 cholera, rotavirus, typhoid, and adenovirus (see relevant chap-
ters in this book). Although vaginal and rectal vaccines may 
work, they would have limited acceptability for social, cultural, 
and practical reasons. The remainder of this chapter will cover 
only the upper and lower respiratory tract, focusing on device 
 technologies for deposition into these tissues, optimal presenta-
tion of antigen to the respiratory immune system, and adjuvants 
to enhance its immune response. 

  Antigen presentation and processing in the 
respiratory tract 

  Airborne particle entry and airflow 
 Like pathogens, respiratory vaccine antigens enter as airborne 
particles through the nares or mouth into airways designed to 
foil their entry and passage. Particles inspired through the nose 
are first filtered by the nasal hairs, and then they must traverse 
the external nasal valves, slit-like passages that limit airflow 
from the nares into the internal nasal airways. Djupesland and 
colleagues showed that only 25% of large, high-speed droplets 
(average, 43  μ m) of a traditional nasal spray reach beyond the 
external nasal valve.  754   This nasal filtration system may be 
bypassed by oral delivery via mask or mouthpiece. However, 
most large, high-speed particles are stopped in the mouth. 

 Small particles inhaled via nose or mouth share a common 
pathway through the oropharynx, larynx, and trachea. The bifur-
cation of the trachea into the right and left bronchi starts a series 
of bifurcations, providing further surfaces to trap airborne par-
ticles. Only very small, light, and slow-moving particles succeed 
in navigating the tortuous pulmonary passages to deposit in the 
lower airways. The smallest particles ( ≤  3  μ m) may reach the 
alveoli, where they can be rapidly absorbed into systemic circu-
lation. The complex branching of the lung passages also results 
in an astonishing alveolar surface area, exceeding 100 square 
meters in a human adult male, compared with an average of only 
about 150 square centimeters (0.015 m  2  ) in the nasal airways.  755   
The lower airways in humans do not typically have organized 
lymphoid tissues, but they do have abundant intraepithelial den-
dritic cells and alveolar macrophages that process antigens.  756    

  Particle deposition, movement, and uptake 
 In the internal nasal airway, particles deposit on the nasal 
mucosa covering the turbinates and then join the flow of mucus 
that is swept by ciliated epithelia toward the pharynx, where it 
is swallowed. Immune surveillance of antigens in the flow of 
mucus begins as they are taken up into epithelial cells, intraepi-
thelial dendritic cells, surface macrophages, and microfold (M) 
cells.  757   ,   758   M cells are specialized epithelial cells that take up 
macromolecules, viruses, and bacteria by endocytosis, and then 
present them to lymphocytes and dendritic cells that congregate 
in invaginated pockets of the M cells; these pockets communi-
cate with the extracellular space (see  Figure 61-1B ).  757–760   

 The predominant organized lymphoid tissue of the human 
respiratory tract is located in the pharynx, where the adenoids 
and other tonsils (collectively known as Waldeyer's ring) sur-
round the nasal and oral passages. The epithelium overlying 
these tissues is rich with M cells.  761   Increasing the deposition of 
vaccine antigen in the posterior nasal passages and nasopharynx 
near Waldeyer's ring may be desirable to maximize the immune 
response. Breath actuation of a nasal spray and nasal inhalation 
of smaller aerosol particles (5 to 20  μ m) are two methods to 
increase nasopharyngeal deposition (see  Figure 61-9A,B   ).  754   ,   762    

  Regional processing 
 Antigen-presenting cells from the respiratory tract drain to 
regional lymph nodes, where the B cells preferentially switch 
to IgA plasmablasts. These plasmablasts “home” back to the 
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airway epithelium to provide antigen-specific IgA protection.  763   
T cells also play a major role in mucosal immunologic memory 
responses. Some lymphocytes exposed to antigen in the respi-
ratory tract migrate to provide protection at remote mucosal 
sites, such as the vagina. This integrated network of immune 
cells and tissues is known as the  common mucosal immune 
system .  764   ,   765   Because the respiratory tract is exposed to a myr-
iad of nonpathogenic macromolecules, there are mechanisms 
for downregulating the immune response to antigenic exposure. 
This immunologic tolerance must be considered when develop-
ing respiratory immunization strategies.  766     

  Challenges for respiratory delivery of vaccines 

  Identifying target tissues 
 The first challenge in respiratory immunization is determining 
the appropriate target tissues. Most respiratory drugs tradition-
ally target two areas. For example, the nasal passages are the 
desired site of action for decongestants, and the lower airways 
are targeted by asthma medications. The optimal target tissues 
are not yet understood for most potential respiratory vaccines, 
and they vary for different antigens. The pharyngeal tonsils are 
likely candidate targets because of their key role in immuno-
logic priming, but some vaccines may require deposition in the 
lower airways for uptake by alveolar macrophages and dendritic 
cells. Scientific methods for evaluating and comparing different 
target tissues are not yet well developed.  

  Applying animal models 
 A second challenge is the difficulty in selecting animal models 
and extrapolating their results for human respiratory vaccine 
delivery. Interspecies differences in respiratory immunologic 
tissue organization limit interpretation of animal target-tissue 
research results for humans. Moreover, the size and anatomy 
of the respiratory tracts of common research animals differ 
greatly from those in humans. For example, in small animals 
such as rodents, nose drops may deposit to the entire respira-
tory tract, which would not be the case in humans. Balmelli and 
colleagues estimated that 30% of 20  μ L of vaccine given to mice 
as IN drops deposited into the lungs.  767   

 Many viruses and bacteria that infect humans do not grow 
well in animal models. For example, species-specific differ-
ences in the distribution of sialic acid receptors on cell surfaces 
is a crucial factor in tissue and host specificity of influenza 
A viruses, which limits the number of animal models suit-
able for influenza research.  768   Such species-specific differences 
can make it difficult to use animals to study attenuated live 
vaccines or vaccine vectors, as well as to challenge animals to 
assess protection. This impedes the development of safe and 
effective respiratory vaccines for humans.  

  Delivering consistent dosages 
 A third challenge for respiratory immunization is dosage accu-
racy. The mass or volume of the antigen delivered depends 
on many factors, including variability in performance by the 
respiratory delivery device, the behavior and technique of the 
person administering the vaccine, and differences in the anat-
omy and physiology between vaccinates (animals) or vaccinees 
(humans).  769   Fortunately, for many vaccines there is a wide mar-
gin between the dosage necessary to induce protection and the 
dosage at which the risk of adverse events increases. 

 The licensure in 2006 in the United States and Europe of the 
first inhalable insulin (Exubera), a drug for which dosage accu-
racy and consistency is critical, suggests that this challenge can 
be overcome for respiratory vaccines.  770   However, the commer-
cial failure of Exubera poses a cautionary example for  developers 
of potential aerosol vaccines. The product was  withdrawn 

from the market in 2007 by the manufacturer because of lack 
of sales, after nearly $3 billion was invested in development 
and licensure. The major reasons cited for this market failure 
were patient and physician concerns about long-term safety, 
 complexity and size of the delivery device, increased cost com-
pared with injection, and the availability of newer injection 
devices such as insulin pens.  771    

  Predicting protection from immune response 
 A fourth major challenge is the lack of accepted correlates of 
protection of mucosal immunity. In contrast, for many diseases 
there are laboratory assays to measure well-established criteria 
for systemic immunity—such as antibody titers above certain 
cutoffs—that have served for many years to predict protection 
from disease. In the absence of accepted serologic or cellular 
correlates of protection induced by mucosal vaccines, clinical 
trials must use specific disease-prevention endpoints, which 
can make the studies much larger and more expensive.  

  Ensuring safety 
 Several immunization safety issues represent further challenges 
for respiratory vaccines. One is the risk that vaccine antigen (live 
or inactivated), adjuvant, or excipients might affect nearby cra-
nial nerves,  46   or might travel along the olfactory nerve through 
the cribriform plate into the brain, with resulting adverse cen-
tral nervous system effects. Vaccines targeting the lower air-
ways may induce or exacerbate bronchospasm or pulmonary 
inflammation, which can be life threatening. Another risk is 
cross-contamination: respiratory pathogens from one patient 
may contaminate the respiratory immunization device and be 
spread to subsequent patients.  772   Also, vaccine aerosols may 
spread beyond the intended vaccinee and affect other persons in 
the vicinity. Finally, live virus or bacterial vaccines might pose 
an increased risk to  immunocompromised persons if delivered 
via the respiratory tract.  

  Designing practical delivery techniques 
 Remaining challenges relate to the delivery devices. Although 
many already exist for delivering drugs to the respiratory tract, 
very few are designed for vaccines. Most respiratory drug devices 
deliver repetitive doses to a single patient. In contrast, the expected 
usage for vaccination devices is to deliver single doses to multiple 
patients, which raises the cross-contamination issue. Although 
single-use, disposable devices or device components could solve 
this problem, they must be inexpensive to be cost effective. 

 Some aerosol-drug delivery devices require patient education 
to obtain the needed cooperation for adequate dose delivery. 
This may be difficult in the brief time typically involved in vac-
cination. In young children, who receive many vaccines, some 
respiratory delivery methods are not effective. 

 Although current respiratory drug delivery devices typically 
target the anterior nasal passages or the lower airway, respira-
tory vaccination may work best in the quite different target of 
the pharyngeal tonsils. In theory, ideal nasal delivery devices 
would prolong effective antigen presentation by depositing over 
a large surface area in the internal nasal airway, allowing mucus 
flow to move vaccine gradually across the tonsils.  

  Advancing the art 
 New delivery technologies to achieve respiratory immunization 
are required if this route is to become practical and accepted. As 
a young field, published research is limited on relevant devices in 
animals or humans. In most reported animal studies, the deliv-
ery device is not mentioned at all, or a laboratory pipette was 
used for intranasal instillation, which would be unsuitable for 
humans. For most respiratory devices designed for humans, test-
ing is very difficult or impossible in an animal model. 
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 Last, perhaps the most significant challenges to imple-
mentation of respiratory vaccination and other novel vaccine 
delivery systems in routine immunization practice are the regu-
latory requirements needed to ensure that the novel systems 
are safe and effective. The studies and clinical trials needed can 
be extremely expensive. Vaccine manufacturers are typically 
 reluctant to assume such cost and risk to relicense an existing 
product already delivering profits, unless the potential benefits 
and market advantages would be significant. The best opportu-
nity to bring alternative delivery into routine practice may be to 
use new delivery systems from the start for new vaccines early 
in their development and licensure process.   

  Current progress in respiratory tract vaccination 

  Wet versus dry aerosols 
 Vaccines can be delivered to the respiratory tract directly as 
either liquid or dry-powder aerosols. All currently licensed vac-
cines (for injection, or for oral or nasal delivery) are either stored 
and administered as a liquid, or stored in dry form and recon-
stituted to a liquid just prior to administration. Delivery of liq-
uid aerosols is thus closer to usual practice. It is also generally 
easier to perform animal studies by generating aerosols from 
existing liquid formulations. Dry aerosols require changes in 
the formulation and manufacture of the vaccine to achieve and 
sustain vaccine potency and powder dispersability. If these chal-
lenges can be met, dry aerosols have several advantages over 
liquid aerosols (see “Dry-powder formulations for respiratory 
delivery”, later).  

  Respiratory vaccination devices   
  AccuSpray™ nasal sprayer 
 The only device currently licensed and in use in the United 
States for respiratory vaccine delivery is the AccuSpray,  84   
which is used for FluMist live attenuated influenza vaccine 
(LAIV).  834   The device is a sterile, single-patient-use, disposable, 
 prefilled glass syringe fixed with a nonremovable plastic nozzle 
( Figure 61-7C,D ). Its total dose is 0.2 mL, of which 0.1 mL is 
sprayed consecutively into each nostril. An attachment on the 
plunger tells the user when to switch nostrils. FluMist vaccina-
tion delivered by AccuSpray is highly effective in most popula-
tions (see     Chapter 18 ). 

 Key advantages of AccuSpray delivery are simplicity of use, 
low cost, disposability outside of sharps waste, and difficulty to 
refill and reuse. The large particle sizes generated by the sprayer 
minimize deposition to the lower airways, reducing the risk of 
adverse pulmonary events. A limitation of the system is that 
the particle size emitted depends on the speed at which the vac-
cinator depresses the plunger. The median diameters of the par-
ticles can range from 200  μ m or greater at plunger speeds of 
up to 33 mm/sec, to 50  μ m or less at speeds of 80 mm/sec and 
greater.  773   Although this wide variability might in theory affect 
the efficiency of vaccine deposition, LAIV by AccuSpray pro-
duces a high rate of protective immunity at the current dosage 
of 10  7   fluorescent focus units (FFU) for each of the three strains 
included in the vaccine. 

 To assess the potential of IN administration of measles 
vaccine, Simon and coworkers conducted a clinical trial with 
live attenuated (Moraten Berna) measles vaccine using the 
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 Figure 61-7    Selected Devices for Respiratory Delivery of Liquid Aerosol Vaccines.    (A)  and  (B)  Investigational Classic Mexican Device for 
aerosol vaccine delivery, illustrated by component diagram  (A)  and use in clinical trials  (B) . A nonmedical electric compressor (not shown) delivers 
roughly 9 L of air per minute at a pressure of 30 to 40 psi (207 to 276 kPa) to a jet nebulizer that is kept in crushed ice to maintain vaccine potency. 
The vaccine aerosol (roughly 0.15 cm  3   of particles averaging 4.3  μ m in diameter) is delivered through a disposable paper cone held close to the 
patient's face for 30 seconds.  776-779   (From Valdespino-Gómez JL, de Lourdes Garcia-Garcia M, Fernandez-de-Castro J, et al. Measles aerosol 
vaccination. Curr Top Microbiol Immunol 304:165-93, 2006 [Fig. 1, p. 169].)    (C)  and  (D)  AccuSpray nasal spray syringe (Becton, Dickinson and Co.  84  ) 
produces an aerosol plume of particles reported from 50 to 200  μ m in diameter, depending on plunger speed.  773    (D)  AccuSpray used for intranasal 
delivery of FluMist influenza vaccine (Medimmune, Inc.  834  ). Prefilled liquid vaccine is stored refrigerated for single patient use. The total volume is 0.2 
mL. A dose separator interrupts delivery at 0.1 mL and, when reset, allows the remaining 0.1 mL to be administered into the opposite nostril.    (E)  and 
 (F)  Investigational AeroVax prototype (AerovectRx, Inc.,  808   developed by Centers for Disease Control and Prevention and Creare, Inc.  805  ). The  (E)  
nebulizer utilizes battery-powered piezoelectric energy to drive an aerosol from a disposable drug cartridge via a microperforated mesh plate through 
a disposable patient interface, such as  (F)  nasal prong in patient nostril, oral prong, or mask (not shown). Droplet diameters can be tailored from 
 <  5  μ m to 10 to 25  μ m for upper or lower airway delivery, respectively.    (Figure 61-7A,  850   7B, courtesy of José Luis Valdespino (Instituto Nacional de Salud Pública, 
Mexico); 7C, D, courtesy of Nuphar Rozen-Alder [Becton, Dickinson and Co.]  84  ); 7E, F, courtesy of James Gathany [CDC Photographic Services].)   
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AccuSpray. IN administration produced protective serum 
 antibody titers in only 50% of nonimmune individuals, com-
pared with protective titers in 100% of volunteers who received 
the vaccine by the SC route.  774   Notably, IN vaccination resulted 
in increased production of measles-virus-specific secretory IgA 
(sIgA) in oral fluid and nasal washes among previously nonim-
mune individuals, but without evidence of a systemic immune 
response.  775    

  Classic Mexican Device nebulizer 
 Another respiratory immunization device that has been used 
in humans is the jet nebulizer system known as the Classic 
Mexican Device (CMD; see  Figure 61-7A,B ). With slight modifi-
cations, this nebulizer system was used to deliver live attenuated 
measles vaccines in multiple clinical trials in Mexico and South 
Africa, and also to vaccinate over 3 million Mexican children 
against measles in a mass campaign.  776–779   The system consists 
of a general-use (non-medical-grade) compressor that delivers 
air to a jet nebulizer (from iPi  780   ,   781  ), which holds the vaccine in 
crushed ice to maintain potency during the vaccination session. 
The vaccine aerosol is delivered through reusable plastic tubing 
to a single-use, disposable paper cone (modified from a drink-
ing cup), which is held close to the patient's face for 30 seconds. 
Typically, the aerosolized dose volume is roughly 0.15 mL, and 
   the mass median aerosol diameter of droplets is 4.3  μ m.  782   

 In a recent study by Bennett and colleagues, the dose for each 
child was delivered from the CMD into a single-use, disposable 
plastic bag to avoid the risk of cross-contamination of the tub-
ing. This reservoir was then separated from the tubing before the 
child inhaled its contents via a one-way valved mask. Preschool-
age children vaccinated from the aerosol reservoir developed 
higher antibody GMTs than did subjects vaccinated by the SC 
route.  783   In a study that assessed the distribution of viable vac-
cine virus across the range of droplet sizes emitted from a CMD, 
Coates and coworkers estimated that 30% of infective viral par-
ticles were contained in droplets with diameters of 5  μ m or less, 
and 23% were in droplets of greater than 10  μ m.  784   

 Although the CMD has demonstrated a level of safety and 
immunogenicity, it is heavy, cumbersome, noisy, and requires 
outlet (mains) electricity and crushed ice. It is thus not practical 
for routine vaccination.  

  Measles Aerosol Project nebulizer 
 Because of the encouraging results of early measles aerosol vac-
cine trials (see “Classic Mexican Device nebulizer”, earlier, and 
“Live viruses”, later), in 2002 the WHO, in partnership with 
the CDC and the American Red Cross, initiated the Measles 
Aerosol Project (MAP). Its goal is licensure of at least one live 
attenuated measles vaccine and its associated aerosol delivery 
system in the developing world.  785   The project documented 
immunogenicity and safety (ie, the lack of local or systemic tox-
icity) in animal studies.  786   Three existing therapeutic nebuliz-
ers were used for phase 1 clinical trials: the AeroEclipse,  787   the 
ComPair,  788   and the Aeroneb.  789   The selection criteria were (1) 
critical performance data, (2) usability under field conditions, 
(3) vaccine potency during nebulization,  790   and (4) existing 
licensure for other uses. Measles vaccine delivery by the three 
devices, delivered to 145 subjects in India, was reported to be 
safe, well tolerated, and immunogenic.  785   

 A modified version of Aeroneb device was selected for use 
in the phase 2/3 pivotal trial initiated in 2009 by the MAP.  791   
The study was a randomized, open-label, active-control, non-
inferiority trial of the measles vaccine in unvaccinated healthy 
infants from 9 to 11.9 months of age. As of November 2011, 
study results had not been released or published.  785    

  Other aerosol devices studied in vaccine research 
 The OptiMist is a breath-actuated nasal-spray device that deliv-
ers liquid or dry-powder aerosols only during oral  exhalation.  792   
Because this raises the soft palate to close the connection between 

nose and throat, pulmonary deposition is avoided, and delivery to 
the posterior nasal segments is increased (see  Figure 61-9A,B ).  754   
In a human study, inactivated influenza vaccine self-admin-
istered using the OptiMist resulted in significant increases in 
virus-specific IgA in nasal secretions, as well as  protective levels 
of virus-specific serum antibodies, after two doses in more than 
80% of subjects.  793   

 A Combitips Plus pipette dispenser  794   was used to deliver a 
dry-powder  Neisseria meningitidis  IN vaccine to human sub-
jects. Those vaccinated by the IN route had serum bactericidal 
antibody titers comparable to that of those vaccinated by con-
ventional injection, and 92% of IN vaccinees had protective 
titers after the second dose. One third of IN vaccinees reported 
mild side effects, compared with the two thirds of injection vac-
cinees who reported mild injection pain.  795   Another dry-powder 
inhaler, the single-use, disposable Twincer  796   ( Figure 61-8E ), 
dispersed an inulin-based dry-powder subunit influenza vaccine 
with an aerodynamic particle size distribution suitable for pul-
monary administration.  797   ,   798   

 Two unique dry-powder delivery devices, the PuffHaler  799–801   
(see  Figure 61-8A,B ) and the Becton, Dickinson (BD) 
Solovent  84   (see  Figure 61-8C,D ), were developed and tested as 
part of an initiative to develop a measles vaccine dry powder 
(MVDP). The project is led by Aktiv-Dry, LLC  799   (see “Dry-
powder formulations for respiratory delivery”, later). Each 
device disperses MVDP into an inexpensive, single-use, dis-
posable reservoir from which the patient inhales, eliminating 
the risk of cross-contamination. After successful demonstra-
tion in the cotton-rat model,  802   MVDP was evaluated in rhe-
sus macaques using PuffHaler and BD Solovent via mask and 
via the direct IN route from the devices.  803   Respiratory deliv-
ery induced robust, significant measles-specific humoral and 
T-cell responses with no adverse effects. When challenged 
more than 1 year later, the MVDP-vaccinated macaques were 
protected from infection with wild-type measles virus.  803   In 
other studies, the BD Solovent was effective for direct nasal 
delivery of influenza vaccine to rats, and of anthrax vaccine 
to rabbits.  101   ,   804   

 The CDC developed the AeroVax nebulizer (see 
 Figure 61-7E,F ), in collaboration with Creare, Inc.  22   ,   805   It utilizes 
a disposable patient interface (nasal prong, oral prong, or mask) 
and a disposable drug cartridge to prevent  cross-contamination. 
Disposable drug cartridges can be manufactured to generate 
custom particle size distributions (eg, 10- to 25- μ m droplets 
for upper-airway delivery, or droplets of 5  μ m or less to reach 
the lower airway). Delivery of live attenuated measles vaccine 
via nasal prong was shown to be safe and immunogenic in 
macaques.  786   

 A 15-second aerosol delivery by the AeroVax device of influ-
enza virus X31 induced a robust immune response in mice, 
which protected them against homologous (X31) and heter-
ologous (PR8) influenza challenge.  806   Nasal aerosol delivery of 
LAIV to ferrets elicited high levels of serum neutralizing anti-
bodies and protected them from homologous virus challenge 
at conventional (median tissue culture infective dose [TCID 50 ], 
10  7  ) and significantly reduced (TCID 50 , 10  3  ) dosages, and pro-
vided a significant level of subtype-specific cross-protection.  807   
AerovectRx, Inc.,  808   acquired the rights to manufacture and dis-
tribute this technology. 

 An investigational device for nasal delivery of dry-pow-
der vaccine to nasopharyngeal tissues only was developed by 
the CDC and Creare, Inc.  805   (see  Figure 61-8F ). It operates by 
patient exhalation through the mouth, blowing the powder into 
the nose while simultaneously generating air flow that limits 
entry to the lower respiratory tract. Its deposition pattern to 
targeted nasal tissues was documented in three-dimensional 
plastic models developed by CFDRC, Inc.,  809   from in vivo com-
puterized tomography of a child's head ( Figure 61-9C,D , and 
see  Figure 61-8F ).    
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  Delivery vehicles for vaccination via 
the respiratory tract 

 Once the device has delivered vaccine to the appropriate 
region of the respiratory tract, sufficient quantities of the 
antigen (and adjuvant if needed) must penetrate  mucosal or 
alveolar  barriers to gain access to appropriate cells to acti-
vate the immune  system. The vehicles or vectors that can be 
used for this purpose include live attenuated viruses (includ-
ing those acting as vectors for exogenous antigen), live atten-
uated bacteria (including vectors), commensal bacterial 
vectors, virosomes, virus-like particles (VLPs), liposomes, 
lipopeptides, immune stimulating complexes (ISCOMs), 
microparticles, and nanoparticles.  810–814   

  Live viruses 
 Viruses are prototypical antigen-delivery vehicles because they 
enter and commandeer cells to replicate themselves, thus mul-
tiplying the available antigen that they encode. Also, viruses 
can induce a natural adjuvant effect through activation of 

chemokines and cytokines. The most widely studied respira-
tory delivery vehicles are live attenuated strains of pathogenic 
viruses.  815–833   Their major risks are possible reversion to viru-
lence, potential neurotoxicity via the olfactory route, and poten-
tial pathogenic effects in immunocompromised persons. 

  Influenza 
 Cold-adapted LAIV (FluMist)  834   is the only vaccine currently 
licensed in the United States for delivery by the IN route. Its 
development, testing, and licensure are reviewed in detail in 
 Chapter 18 . LAIV delivered by the IN route demonstrates sev-
eral potential benefits of this method. It produces both mucosal 
and systemic immunity, and it provides higher protective effi-
cacy than injected inactivated vaccine in young children.  835–841   
It provides heterotypic immunity against influenza strains that 
had antigenically drifted from the vaccine strains.  842   It may 
reduce the risk of influenza transmission because it reduces 
respiratory shedding among immunized children challenged 
later with a vaccine virus.  842   Finally, modest coverage with LAIV 
among school children reduced influenza-related illness rates in 
unvaccinated adults in a community.  843    
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 Figure 61-8    Selected Devices for Respiratory Delivery of Dry-Powder Aerosol Vaccines.    (A)  Investigational PuffHaler dry-powder inhaler 
(Aktivdry, LLC  799  ). Air from the  squeeze bulb  lofts vaccine powder from the  disperser  into the  reservoir  once the pressure threshold of the  burst 
valve  is exceeded. (From Kisich KO, Higgins MP, Park I, et al. Dry powder measles vaccine: particle deposition, virus replication, and immune 
response in cotton rats following inhalation. Vaccine 29:905-912, 2011 [Fig. 1, p. 907].)    (B)  Patient inhales from the single-use-only  reservoir  of 
PuffHaler after detachment from the device, either directly (as shown) or via a disposable mask (not shown). (From Lay J. The man fighting measles 
one breath at a time. Coloradan Magazine [University of Colorado, Boulder], March 2011, [photo, p. 10, by Glenn Arakawa].)    (C)  Investigational 
Solovent dry-powder inhaler prototype (Becton, Dickinson and Co.  84  ). Air from the empty  syringe  ruptures the membranes of the  vaccine container , 
releasing into the  cardstock spacer  a plume of dry powder. Patient inhales from the  cardstock spacer  directly, or via a  mask . The  vaccine container  
(capsule),  spacer  and  mask  are single-use disposables.    (D)  Plume of powder upon release from Solovent in open air for visualization purposes.  
  (E)  Investigational Twincer  796–798   single-use, disposable, dry-powder inhaler for pulmonary delivery (University of Groningen). The drug formulation 
is stored in the snap-together plates of the device in an aluminum blister for maximal moisture protection. The powder becomes available for 
inhalation upon pulling a foil cover that protrudes from the rear of the inhaler (not shown).    (F)  Investigational nasal dry powder inhaler developed by 
CDC and Creare, Inc.  805   A prefilled cup (shown between right thumb and forefinger) containing the powdered vaccine is opened by its attachment to 
the device. The breath of the patient blowing into the device tube carries the dry powder into the nose. In theory, dispersion during patient exhalation 
limits pulmonary deposition from the posterior nasal space. The plastic face is a phantom model of the airway of a 5-year-old child constructed 
according to in vivo computerized tomography (CFDRC, Inc.  809  ).    (Figure 61-8A, courtesy of Scott Winston [Aktivdry, LLC  799  ]  802  ; 8B, courtesy of Glenn Asakawa 
[University of Colorado]  801  ; 8C, courtesy of Becton, Dickinson and Co.  84   [Kenneth Powell]; 8D, courtesy of Becton, Dickinson and Co.  84   [Vincent Sullivan]; 8E, courtesy of 
University of Groningen [A. H. de Boer]; 8F, courtesy of Darin Knaus [Creare, Inc.  805  ].)   
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  Measles 
 After influenza, measles is the next-most-studied disease for 
vaccine delivery via the respiratory tract, pioneered by Albert 
Sabin in the later years of his career.  844–847   This evidence base 
prompted the Measles Aerosol Project, described earlier.  785   
Reviews and meta-analyses  229   ,   848–850   of multiple clinical studies 
revealed three basic immune-response patterns after measles 
vaccination. 

 First, drops or sprays delivered to the conjunctiva, or to 
the oral or nasal mucosa, produced inconsistent immune 
responses.  226   ,   851–859   Second, delivery of small-particle liquid 
aerosols via pulmonary inhalation to children 10 months of 
age or older typically produced immune responses in very high 
proportions of subjects. These responses to aerosol vaccinees 
were usually equivalent to or greater than the responses to 
injected vaccines.  778   ,   779   ,   783   ,   851   ,   852   ,   856   ,   857   ,   860–870   For example, Dilraj 
and colleagues found that 96%, 94%, and 86% of schoolchil-
dren who received the aerosol measles vaccine had antibody 
titers of greater than 300 IU/mL at 1, 2, and 6 years after 
vaccination, respectively, compared with 91%, 87%, and 73% 
among injected vaccinees.  779   ,   867   ,   868   

 The third pattern noted was generally lower immune responses 
for the aerosol route, compared with parenteral injection, among 
children younger than 10  months.  776   ,   777   ,   844–847   ,   855   ,   862   ,   865   ,   871   ,   872   For 
example, Wong-Chew and coworkers found vaccination of 
12 and 9 month old infants by injection induced immunity 
in 100%, but by aerosol route in only 86% and 23%, respec-
tively.  776   ,   777   One hypothesis was that the very low respiratory 
minute volume of young infants results in too small a dose 
of aerosol vaccine in that period of time. A follow-up study by 
Wong-Chew and colleagues demonstrated that increasing expo-
sure time to aerosol measles vaccine elicits immune responses 
that are comparable to those seen when an equivalent dose is 
administered by the SC route in 9 month old infants.  873   
 With regard to vaccine safety, the same reviews and meta- 
analyses  229   ,   848–850   noted that no severe adverse events were 
reported after aerosol measles vaccination in any of the studies. 
Rates of minor adverse events, when reported, have typically been 
less than or the same as vaccination by injection.  776   ,   777   ,   779   ,   864   ,   866   ,   874   
Experience in mass campaigns was  similar, with de Castro and 
colleagues reporting no serious adverse events among more than 
3.7 million children in Mexico vaccinated by aerosol.  875    
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 Figure 61-9    Modeling and Evaluation Techniques for Nasal Deposition of Vaccine Aerosols.    (A)  Sagittal and  (B)  horizontal sections 
rendered by computer-assisted imaging to illustrate intranasal delivery by investigational Optimist nasal spray device (OptiNose, Inc.  754   ,   792  ). 
Exhaling into the device against pressure lifts the soft palate, closing off the nasal cavity and limiting pulmonary deposition. The breath actuates 
the release of liquid or powder particles, which are carried beyond the nasal valve to target sites. Image (B) shows the air flow passing through the 
communication posterior to the nasal septum and exiting through the other nasal passage.    (C, left)  Front and  (C, right)  rear views of a coronal 
section of the CFDRC  809   CT-based model shown and described in  Figure 61-8F . Its plastic is darkened to highlight the external nasal valves. The 
rear view  (C, right)  shows the nasal valves, the transitional area between the squamous epithelia of the nares, and the mucosal tissue lining 
the internal nasal airway.    (D)  Medial section of the right internal nasal airway of a plastic, phantom model shown and described in  Figure 61-8F  
(CFDRC, Inc.  809  ). The external nares and face (not shown) are to the right, proximal to the nasal valve. The pharynx (not shown) is to the left, distal to 
the nasopharyngeal opening. The red-pigmented powder indicates the deposition pattern from the investigational nasal dry-powder inhaler shown 
in  Figure 61-8F .    (Figure 61-9A, B, courtesy of OptiNose  792   [Per Gisle Djupesland]; 9C, courtesy of James Gathany (CDC Photographic Services); 9D, courtesy of Creare, 
Inc.  805   [Darin Knaus].)   
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  Rubella and mumps 
 IN delivery of live attenuated rubella vaccine was investigated 
during the 1970s in many clinical trials.  876–883   Ganguly and 
coworkers demonstrated that IN drops or spray of vaccine virus 
produced mucosal IgA antibody, equivalent serum IgG anti-
body, and better protection against reinfection compared with 
SC vaccination.  878   The subjects who received the IN challenge, 
however, had higher rates of mild adverse events, usually rhini-
tis and sore throat. 
 In more recent studies, Bennett and colleagues found that aero-
sol vaccination of preschool children with a combination mea-
sles-mumps-rubella vaccine produced antibody responses to 
rubella and mumps equivalent to those produced by injection.  783   
Sepúlveda and coworkers found that aerosolized  measles-rubella 
combination vaccine in school-age children not previously vac-
cinated against rubella produced high levels of rubella immu-
nity, equivalent to that seen after SC injection. Fewer adverse 
events were reported in the aerosol group.  864   Diaz Ortega and 
colleagues found that measles-mumps-rubella vaccination by 
aerosol in college students produced immune responses similar 
to those produced by injection, with seropositivity retained in 
all vaccinees 1 year after vaccination.  869   ,   870    

  Live viruses as vaccine vectors 
 Recombinant viruses acting as vectors by incorporation of a 
gene expressing a heterologous antigen have advantages sim-
ilar to those of conventional attenuated live virus vaccines. 
They deliver the genetic code for the antigen into cells, and it is 
 replicated to activate the immune system. Viruses used as vac-
cine vectors should, ideally, have very low pathogenic potential, 
even in immunocompromised people, as well as the capacity 
to incorporate the necessary foreign genes for desired antigens, 
promoters, and adjuvants. 

 Viruses that naturally infect or grow in respiratory tissues 
are especially well suited as vectors for respiratory immuniza-
tion. Some studied in animal models include adenoviruses, alpha 
viruses, poxviruses, baculovirus, vesicular stomatitis virus, and 
adeno-associated virus.  884–899   Adenovirus vectors delivered IN in 
several animal models produced immune responses against many 
diseases.  286   ,   288   ,   900–920   For example,  defective-complex adenovi-
rus containing Ebola virus genes protected nonhuman primates 
against aerosol challenge with two Ebola species.  919   Vaccinia strains 
such as modified vaccinia Ankara (MVA) have also been used 
effectively as vectors for respiratory immunization.  921–927   An MVA 
vector expressing an HIV-1 antigen induced, by the IN route, anti-
gen-specific mucosal CD8 +  T cells in  genital tissue and draining 
lymph nodes of mice, along with serum and vaginal antibodies.  927   
 One caveat for the use of vectored vaccines is that preexisting 
immunity, in the population, to the vector virus, either by natu-
ral exposure or by previous use in another vaccine, may reduce 
its effectiveness. However, Song and colleagues reported a series 
of studies in which adenovirus-vectored vaccines delivered as a 
fine aerosol to the lungs produced strong immunogenicity even 
in animals with preexisting anti-adenoviral immunity, suggest-
ing that pulmonary delivery may overcome this limitation to 
viral vector vaccines.  928     

  Live bacteria 
 Animal models of respiratory immunization have been used 
to study attenuated respiratory pathogen vaccines such as 
 Mycobacterium bovis  (BCG) and attenuated  Bordetella per-
tussis,  as well as nonrespiratory pathogens such as  Salmonella  
and  Shigella  acting as recombinant vectors.  929–935   Mouse stud-
ies also demonstrated an improved immune response to con-
ventional BCG vaccine delivered by the IN route or by aerosol 
inhalation, compared with injection.  923   ,   936–942   The studies that 
included a challenge found that the respiratory route provided 
better  protection than injection. Attenuated  M. tuberculosis  has 
also been immunogenic by the respiratory route.  943   

 As vectors, bacteria have an advantage over viruses because 
of their higher capacity for insertion of the heterologous genes 
expressing antigens, adjuvants, or plasmids for DNA vaccina-
tion (see next section).  811   Recombinant BCG has been used to 
express various heterologous antigens, including simian immu-
nodeficiency virus,  Borrelia burgdorferi,  and  Streptococcus 
pneumoniae .  944–947   Live attenuated  Bordetella pertussis  vac-
cine delivered by the IN route protected mice from  Bordetella  
challenge.  948–951   Similar IN delivery of recombinant  B. pertus-
sis  expressing  antigens of  Clostridium tetani, H. influenzae, 
N. meningitidis,  and  Schistosoma mansoni  induced strong 
immune responses in mice.  952–955   

 Attenuated recombinant  Salmonella  vaccines produced 
strong immune responses against a wide variety of pathogens 
when delivered by the IN route to rodents.  935   ,   956–965   Similar 
results were reported for IN  Shigella  vectors carrying entero-
toxigenic  E. coli  and tetanus genes.  966   ,   967   Commensal bacte-
ria such as food-grade strains of  Lactococcus, Lactobacillus,  
and  Streptococcus gordonii  have also been explored as vaccine 
vectors.  968–972   Bacterial expression of adjuvants such as chol-
era toxin B, interleukin (IL)-6, and IL-12 has been shown to 
increase the immune response to respiratory vaccines.  936   ,   973   

 A potential risk of administering live microbes was revealed 
in mice that developed dosage-dependent granulomatous BCG 
infiltration of the lungs after IN but not SC vaccination of 
BCG.  937   As with viruses, preexisting immunity to the bacterial 
vector may diminish the immune response.  974    

  DNA vaccines 
 DNA vaccination involves the delivery of eponymous plas-
mids directly into host cells to express the desired anti-
gens.  975   Delivery of naked DNA to the respiratory tract as 
a vaccine has been studied in animal models for many dis-
eases.  439   ,   926   ,   976–995   For example, Kuklin and associates found 
that nasal delivery of a herpes simplex DNA vaccine generated 
higher levels of vaginal IgA than by the IM route, although 
the IM vaccine produced stronger serum antibodies and better 
protection against challenge.  995   Live attenuated bacteria, espe-
cially  Salmonella  and  Shigella,  have been vectored to produce 
DNA for IN  vaccination.  966   ,   996–999   For example, cotton rats vac-
cinated with attenuated  Salmonella  vaccine expressing DNA 
encoding for measles antigens resulted in significant reduc-
tion in measles virus titers in lung tissues after challenge.  1000   
Virosomes, liposomes, and microparticles as carriers of vac-
cine antigens—discussed next—have also delivered DNA by 
the respiratory route.  1001–1005    

  Non-replicating vaccine delivery systems 
 Synthetic constructs, including liposomes, virus-like-particles 
(VLPs), virosomes, immunostimulating complexes (ISCOMs), 
microparticles, and nanoparticles, are nonreplicating deliv-
ery systems that mimic live viruses in how they appear to the 
immune system to enhance antigen delivery (they may also 
carry adjuvant). Their terminology is not mutually exclusive 
and some terms are used synonymously. The particles are about 
the same size as viruses, allowing similar uptake by antigen-pre-
senting cells. Many include a lipid component to increase cell 
membrane permeability, and they may contain unrelated viral or 
bacterial  proteins to activate the immune system. 

 Liposomes are vesicles composed of a phospholipid bilayer 
membrane. Antigen can be packaged in its aqueous core, inside 
the lipid bilayer, or on the outside of the membrane.  1006–1008   A lipo-
somal HIV-1 vaccine delivered to mice by the IN route resulted 
in strong IgG and IgA responses in serum and vaginal washes.  1009   

 VLPs are aggregates of viral proteins that may include a lipid 
component.  1010   ,   1011   IN vaccination of VLPs with influenza antigens 
similar to those of the 1918 pandemic strain protected mice and 
ferrets from lethal 1918 and H5N1 influenza virus challenge.  1012   
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 Virosomes have lipid bilayer membranes with embedded 
viral proteins and resemble viruses except that they lack the 
genetic material needed to replicate.  1013   ,   1014   Cusi and coworkers 
vaccinated mice by the IN route with a reconstituted influenza 
virosome assembled with plasmids expressing the carcinoem-
bryonic antigen (CEA) gene.  1015   The intranasally vaccinated 
mice developed CEA-specific antibodies but were not pro-
tected from challenge with CEA-expressing mastocytoma cells. 
However, when the CEA virosomal vaccine was coadministered 
by the IN route with reconstituted influenza virosomes with 
plasmids expressing the CD40L gene as an adjuvant, the level 
of antibody increased and the mice were protected from tumor-
cell challenge. 

 ISCOMs are cage-like structures roughly 40 nm in size, 
composed of 12 subunits of saponin (such as Quil A) and cho-
lesterol.  1016   Several antigens administered in ISCOM-based 
IN vaccines produced strong systemic and mucosal immune 
responses.  1016–1022   For example, IN administration of ISCOMs 
with a tuberculosis recombinant protein strongly boosted prior 
BCG immunity and reduced bacterial burden in the lungs com-
pared with nonboosted mice. 

 Respiratory delivery can also be enhanced by packaging 
antigens and adjuvants into microparticles or nanoparticles 
composed of polymers of biodegradable materials such as poly-
lactide (PLA) and polylactide co-glycolide (PLGA), or into bio-
polymers such as chitin or chitosan.  1023–1032   Microparticles can 
be designed to slowly release antigens to increase the duration 
of antigen presentation. Carcaboso and colleagues reported 
that mice immunized by the IN route with a synthetic malaria 
vaccine encapsulated into 1.5- μ m-diameter microparticles of 
PLGA had significantly higher antigen-specific serum IgG titers 
than control mice given the vaccine by the SC route with alum 
adjuvant.  1030   Pulmonary immunization with chitosan mic-
roparticles containing diphtheria toxoid resulted in neutralizing 
antibody titers comparable to or significantly higher than those 
achieved after SC administration of alum-adsorbed diphtheria 
toxoid.  1032     

  Dry-powder formulations for respiratory delivery 

 Vaccines based on any of these delivery systems could poten-
tially be formulated into powders for direct delivery in the dry 
state, a technique for which there is growing interest. For exam-
ple, a PubMed search in October 2011 using the terms vaccine 
and powder yielded 33 articles published since 2000, related 
to respiratory delivery of powder vaccines, compared with only 
two prior to that year. 

 A number of obstacles must be overcome to produce suc-
cessful respirable vaccines as dry particles of the sizes suitable 
for delivery to the respiratory tract.  1033–1035   First, formulating 
powders requires significant and extensive changes in manu-
facturing methods, even from those used for current lyophilized 
vaccines. Second, many potential dry formulation ingredients 
are extremely hygroscopic and gum up when exposed to humid-
ity. Engineering is needed to maintain their structure and dis-
persability for delivery in the dry state. Third, once the powders 
are deposited in the respiratory tract, they must be sufficiently 
hygroscopic to dissolve and release the vaccine for uptake. 

 Another challenge is that most dry-powder delivery devices 
require active inhalation by the patient and thus may be 
impractical for small children. Two potential solutions for this 
age group, however, are direct nasal delivery, as well as dispens-
ing the powder into a reservoir (see, eg,  Figure 61-8A,B ) from 
which the child can breathe normally.  803   

 On the other hand, there are several significant potential 
advantages to dry-powder vaccination. Doses can be filled into 
inexpensive, single-use presentations and delivered without 
on-site aqueous reconstitution, thus avoiding the occasional 
human error that results in using the wrong or contaminated 

diluent. The cost of shipping and storing such diluents would 
be avoided. Secondary packaging that seals the dose container 
in an impermeable overwrap, such as metal foil, could maintain 
low humidity, which may prolong potency and increase shelf 
life. Recent progress for improving the thermostability of liquid 
vaccines, and even more so for dry ones,  1036   points to a future in 
which many vaccines may not require a cold chain.  364   

  Measles vaccine powders 
 Measles vaccination has been a path-finding application for 
respiratory delivery of dry powder. Early formulations were 
finely milled and retained adequate potency, but immune 
responses were poor when delivered to the respiratory tract of 
macaques.  1033   ,   1035   An active developer is Aktiv-Dry,  799   which is 
working with partners including the Serum Institute of India 
(SII), the CDC, and the University of Colorado. In 2005, 
its MVDP project was awarded over $19 million in a Grand 
Challenges in Global Health grant from the Bill and Melinda 
Gates Foundation to refine a formulation, establish dry-powder 
measles vaccine production capacity at SII, and complete ani-
mal and phase 1 clinical testing.  1037–1039   

 Aktiv-Dry uses a novel spray-drying system to manufacture 
inhalable MVDP, starting from a bulk liquid of SII-provided, live 
attenuated antigen containing myo-inositol as a stabilizer. Virus 
plaque assays demonstrated potency losses in the drying process 
of 0% to 22%, which is comparable to losses seen with lyophi-
lization.  1040   As reported earlier, the end product demonstrated 
immunogenicity in cotton rats and rhesus macaques.  802   ,   803   Its 
licensure-grade toxicology study found no test-article-related 
effects, or delayed onset of toxicity after inhalation by Sprague–
Dawley rats.  1041   A second toxicology study after administration 
by mask using either BD Solovent or PuffHaler to measles-
seronegative rhesus macaques produced no effects in mortality, 
clinical observations, respiratory function, clinical pathology, or 
histopathology.  1042   

 SII manufactured MVDP, and its clinical trial application 
was approved by the Drug Controller General of India to con-
duct a phase 1 safety trial in adults, adolescents, and infants 
using the PuffHaler or BD Solovent devices. The trial began in 
May of 2012. 

 A separate project, reported by Ohtake and coworkers, found 
that a dry-powder measles vaccine, made by mild spray- drying and 
with unique stabilizers, was stable for up to 8 weeks at 37° C.  1036    

  Influenza vaccine powders 
 Dry-powder vaccines for influenza have been formulated and 
tested by several groups. A whole, inactivated virus product 
delivered by the IN route in rats elicited high titers of nasal 
anti-influenza IgA, as well as serum antibody titers equivalent 
to those obtained with injected vaccine.  804   No loss of potency 
was found when it was stored at 25° C and 25% relative humid-
ity for up to 12 weeks, and at 40° C and 75% relative humidity 
for 2 weeks. 

 Another formulation produced by spray-freeze drying, with 
subunit viral antigen and inulin stabilizer, induced, upon pul-
monary delivery, humoral (IgG), cell-mediated (IL-4, interferon 
gamma), and mucosal (IgA, IgG) immune responses in BALB/c 
mice.  1043   The pulmonary route for a spray-freeze dried, whole 
inactivated virus vaccine stabilized with inulin provided protec-
tion similar to that provided by IM injection of mice exposed to 
a lethal dose of live virus.  1044    

  Powder formulations for other vaccines 
 Other human-disease targets for dry-powder delivery 

 studies include tuberculosis, hepatitis B, norovirus gastro-
enteritis, anthrax, and plague. A spray-dried formulation of 
adenovirus-vectored tuberculosis antigen with  mannitol-based 
 stabilizers was shown to have characteristics suitable for 
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pulmonary delivery in terms of thermodynamics, water 
 absorption,  particle size distribution and morphology, and 
virus survival.  1045   Nanoparticle-aggregate formulations con-
taining recombinant hepatitis B surface antigen adminis-
tered to the lungs of guinea pigs produced high IgG and IgA 
titers.  1046   Nasal vaccination with Norwalk-virus VLPs with 
an inert in situ gelling polysaccharide induced systemic 
and mucosal antibody titers equal to or greater than those 
achieved by VLPs plus adjuvant in a liquid formulation deliv-
ered by the IN route.  1047   Dry-powder vaccines against bioweap-
ons threats have been studied. For example, anthrax vaccine 
by the IN route provided complete protection against inha-
lational challenge with roughly 90 times the median lethal 
dose [LD 50 ], in rabbits, while providing better stability than 
liquid  formulations.  101   ,   1048   ,   1049   A stable powder vaccine against 
 Yersinia pestis  administered by the IN route to mice required 
but an extra dose of vaccine to achieve protection similar to 
that of IM delivery against plague after lethal challenge.  1050     

  Adjuvants for respiratory delivery 

 Nonreplicating antigens delivered via the respiratory tract 
are typically poorly immunogenic and may require adjuvants 
to stimulate an appropriate immune response. Adjuvants 
studied for this purpose include bacterial toxins and their 
derivatives, other bacterial components, bacterial DNA 
motifs, cytokines and chemokines, plant derivatives, and 
nanoemulsions.  1051–1056   

  Toxins 
 Cholera toxin (CT) and  E. coli  heat-labile toxin are potent adju-
vants, but in native forms they may be too toxic for some uses 
in humans (see “Bacterial exotoxins”, earlier).  1053   ,   1057–1062   LT 
adjuvant in a commercial Swiss influenza vaccine for IN deliv-
ery was suspected as the reason for a many-fold increase in the 
risk of Bell's palsy after vaccination, leading to market with-
drawal of the vaccine in 2001.  46   ,   47   Although the pathogenesis 
of the vaccine's effect on the seventh cranial nerve is uncer-
tain, branches of the nerve do run near the nose. Other adverse 
neurologic effects of CT and LT have been hypothesized, based 
on their accumulation in the olfactory bulbs of BALB/c mice 
after nasal administration, sometimes with concurrent inflam-
mation.  1063   As a result, recent adjuvant research has focused 
on subunits, detoxified versions, and other variants of CT and 
LT.  1064–1081   Several of these, such as CTA1-DD, do not accumu-
late in the olfactory bulb of BALB/c mice.  1082    

  Structural bacterial components 
 Other bacterial products that induce potent activation of the 
innate immune system include lipopolysaccharide and its deriva-
tive, monophosphoryl lipid A, as well as outer membrane proteins, 
flagellins, lipopeptides, filamentous hemagglutinins, and proteos-
omes.  815   ,   1083–1093   The last are outer membrane proteins of menin-
gococci, which self-assemble into hydrophobic, proteinaceous 
nanoparticles.  1094   An intranasally delivered, proteosome-based, inac-
tivated influenza vaccine produced serum and mucosal antibodies 
in human subjects.  1084    N. meningitidis  B  proteoliposome-derived 
cochleate was demonstrated to be a potent mucosal adjuvant.  1095   
Three doses of tetanus toxoid vaccine with this adjuvant adminis-
tered by the IN route to mice promoted IgG serum titers and IgA 
titers in saliva and vaginal washes that were significantly higher 
than to tetanus toxoid alone.  

  Nucleotide stimulators of innate immunity 
 Oligodeoxynucleotides of cytosine and guanine with phospho-
diester backbone (CpG ODNs) mimic motifs found in bacte-
rial DNA. They are potent adjuvants, as the innate immune 
system recognizes these as  pathogen-associated molecular 

 patterns .  1096–1100   Abe and colleagues found that a nontype-
able  H. influenzae  (NTHi) vaccine, delivered by the IN route 
with CPG ODNs, produced mucosal IgA and serum IgG 
responses similar to those produced by vaccine delivered with 
CT. Enhanced  clearance of NTHi from the nasopharynx after 
challenge was shown equally in both groups.  1100   The inclusion 
of CpG ODNs with four HIV peptide antigens in micropar-
ticles delivered by the IN route to mice significantly enhanced 
 peptide-specific IgG and IgA peak titers and prolonged the 
duration of these antibodies, and it increased the sIgA response 
in mucosal washes.  1101   However, in another study, daily injec-
tions of high-dosage (60  μ g) CpG resulted in lymphoid follicle 
destruction and immunosuppression with liver necrosis after 
20 days.  1102   Therefore, the potential adverse effects of CpG 
ODNs should be studied.  

  Protein signalers 
 Because many adjuvants induce the activation of cytokines 
and chemokines, investigators have looked at these cellu-
lar signaling molecules as adjuvants themselves that might 
reduce adjuvant toxicity.  1103–1110   Cytokines have been added 
directly to vaccine, or encoded for expression by a live vec-
tor or DNA vaccines.  1108   Bracci and colleagues found that, in 
mice, a single IN dose of an inactivated influenza vaccine pro-
vided full protection against virus challenge when the cyto-
kine interferon type I was included as an adjuvant.  1109   Without 
it, the same dosage was only partially protective (40%). In 
mice, IN administration of pneumococcal surface protein A 
or tetanus toxoid, combined with the cytokine IL-1 β , induced 
protective immunity equivalent to that induced by parenteral 
delivery.  1110    

  Natural polymers 
 Chitin is a natural polysaccharide found in crustaceans. Its 
partial deacetylation yields chitosan, which is widely used 
in food products, as an excipient in drugs, and as a nutri-
tional supplement.  1111   Chitin and chitosan have mucoadhe-
sive properties and stimulate the innate immune system.  1112   
In humans, the addition of chitosan to a detoxified diph-
theria toxin based on CRM-197 significantly increased 
toxin- neutralizing antibody levels upon IN delivery.  1113   The 
saponins of the  Quillaja saponaria  tree are potent adjuvants 
with high toxicity. Quil A, QS-21, and Iscoprep 703 are 
 Q. saponaria  derivatives with less toxicity.  1054   As an adjuvant 
for an IN HIV-1 DNA vaccine studied in mice, QS-21 con-
sistently increased antigen-specific serum IgG and mucosal 
IgA compared with vaccine without adjuvant.  1114   Quil A and 
Iscoprep 703 are commonly used as components of immuno-
stimulating complexes. 

 Combining adjuvants for respiratory vaccination may syn-
ergistically enhance immune protection. For example, IN 
delivery to mice of an influenza recombinant hemaggluti-
nin (rHA) antigen, along with a combination of proteosomes 
and lipopolysaccharide adjuvants, enhanced serum IgG and 
mucosal IgA antibodies up to 250-fold compared with vac-
cine alone.  1088   Also, IN delivery of an influenza vaccine with 
a combined CTA1-DD/ISCOM adjuvant vector was superior 
to other vaccine formulations using the ISCOM or CTA1-DD 
adjuvants alone.  1115    

  Nanoscale mixtures 
 Nanoemulsions are another class of adjuvants studied for respira-
tory vaccination. A soybean oil-in-water nanoemulsion was mixed 
with either US-licensed Fluzone,  97   or Fluvirin  443   inactivated, influ-
enza vaccine (usually injected by the IM route), and delivered by 
the IN route to naïve ferrets.  1056   Resulting seroconversion rates 
were 67% to 100% against each of the three viral strains  present 
in the vaccine. There was also protection against homologous 
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viral challenge and significant cross-immunity to five other H3N2 
influenza virus strains not present in the vaccine.   

  Respiratory vaccination in veterinary practice 

 The respiratory route of vaccination is common in veterinary 
medicine.  1116   Aerosol vaccines for the IN route or by pulmo-
nary inhalation are commercially available for cows (bovine 
herpes virus 1, parainfluenza virus 3), pigs  (Salmonella),  
horses  (influenza,  Streptococcus equi ), dogs  (Bordetella bron-
chiseptica),  cats (feline calcivirus, feline herpesvirus 1), and 
chickens (infectious bronchitis virus, infectious laryngotra-
cheitis virus, Newcastle disease virus). Almost all of the respi-
ratory veterinary vaccines have live attenuated pathogens. In 
the United States, more than 8 billion chickens are vacci-
nated yearly using live attenuated vaccines delivered as aero-
sols or spray.  1117    

  Respiratory vaccines for bioterror agents 
and pandemic threats 

 Many biological agents for potential bioterrorism or biowarfare 
cause life-threatening respiratory infections and would probably 
be disseminated as aerosols. Thus, vaccine-induced mucosal 
immunity may be advantageous. Compared with the paren-
teral injection, respiratory vaccination increased survival after 
aerosol exposures of deadly agents in animal studies.  1048   ,   1049   
For example, a microsphere-based liquid anthrax vaccine deliv-
ered by the IN route to mice completely protected against aero-
sol challenge with anthrax spores.  1118   Two doses of human 
 parainfluenza-virus-vectored Ebola vaccine were highly immu-
nogenic in macaques and protected all animals against lethal 
Ebola virus challenge.  1119   A powdered formulation of anthrax 
vaccine with CpG ODNs administered intranasally to rabbits 
also provided full protection.  101   Other bioterror agents for which 
respiratory vaccines have shown increased protection against 
aerosol challenge include  Francisella tularensis  (tularemia ) , 
staphylococcal enterotoxin B,  Burkholderia mallei  (glanders) 
and  Y. pestis  (plague).  1050   ,    1120–1125   

 The threatened pandemic of severe acute respiratory syn-
drome (SARS) in 2002-03, and the actual one of H1N1 influenza 
in 2009-10, illustrate the critical need for prompt development 
of new vaccines and their rapid delivery in all countries poten-
tially affected. In responding to future threats when new vac-
cines may be required, respiratory delivery may be useful for 
the various reasons already described. Simple devices, such as 
single-use dry-powder inhalers, could be distributed by mail and 
self-administered for mass vaccination if congregating crowds 
for conventional campaigns were deemed unwise. 

 IN delivery of  Salmonella -vectored vaccine against the 
SARS coronavirus resulted in higher production of specific 
IgG and IgA than orogastric, intraperitoneal, or intravenous 
administration, and it provided high levels of specific cyto-
toxic T lymphocytes in BALB/c mice.  1126   Two IN doses of live 
attenuated H5N1 influenza A vaccine fully protected mice and 
ferrets against pulmonary replication of homologous and het-
erologous strains of wild-type H5N1.  1127   Such cross- protection 
against diverse strains would be desirable for pandemic vac-
cine because of potential rapid changes in influenza surface 
antigens. For example, IN administration of inactivated, 
whole-virus H5N1 vaccine with adjuvant elicited immune 
responses with both sIgA in nasal, lung, and vaginal lavage, 
and IgG in serum, showing protective immunity against lethal 
H5N1 challenge and cross-clade protection.  1128   Also, aerosol-
ized LAIV provided heterologous protection against pandemic 
H1N1 virus challenge in ferrets.  807     

  Conclusion 

 Cutaneous, jet-injected, and respiratory methods for vaccine 
delivery overcome the dangers and often the hidden costs of tra-
ditional needle and syringe. Some long-standing, many novel, 
these techniques may offer other advantages in terms of dosage 
sparing, immune response, economics, thermostability, patient 
and user preference, and expanded venues for use. 

 Many promising techniques described in this chapter, how-
ever, face daunting obstacles to bridge the gap between successful 
proofs of principle in animal models by academic laboratories, 
and the expensive and complicated series of clinical trials (par-
ticularly for the many target diseases lacking convenient labo-
ratory assays that predict protection) and related studies and 
regulatory steps to achieve licensure.  30   Indeed, the financing of 
all these stages requires investors to envision methods for their 
commercial-scale manufacturing and to predict demand in a 
rather monopsonistic market. 

 Finally, at the downstream outlet of the vaccine R&D pipe-
line, public health and immunization program policymakers, 
end-user purchasers, and (nowadays) independent philanthropic 
entities must be convinced by their own economic analyses and 
other considerations to pay for these fruits of immunization sci-
ence. Perhaps some of the new technologies described and illus-
trated herein will help fulfill the widely admired goal that “all 
people deserve the chance to live healthy and productive lives”.  1129    
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